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Tropical cyclogenesis (TCG) continues to be one of the least understood pro-

cesses in tropical meteorology today. While a robust theoretical framework for TCG

within African Easterly Waves (AEWs) has recently been developed, little work ex-

plores the mesoscale processes and interactions with the AEW during TCG. This

study investigates the TCG of Hurricane Julia from the 2010 north Atlantic hurri-

cane season using a series of high-resolution model simulation with the finest grid size

of 1 km. In addition to a control simulation used to study the mesoscale processes

during TCG, 20 ensemble simulations are conducted to identify key dynamical and

thermodynamical processes taking place during TCG. These ensembles also serve

to quantify the predictability of TCG while determining the processes responsible

for ensemble solution disagreements.

It is found that the TCG of Hurricane Julia is triggered by the pronounced

upper-tropospheric warming associated with organized deep convection. The upper-

level warming is able to intensify and become a meso-α-scale feature due to a storm-

scale outflow beyond the Rossby radius of deformation. The simulation confirms



previous ideas by demonstrating that the intersection of the AEW’s trough axis and

critical latitude is a preferred location for TCG, while supplementing such work by il-

lustrating the importance of upper-tropospheric warming and meso-α-scale surface

pressure falls during TCG. Ensemble simulations further elaborate on the mech-

anisms by depicting substantial parametric differences between the stronger and

weaker members. The dominant pattern of mean sea-level pressure (MSLP) ensem-

ble differences is associated with the intensity of the pre-tropical depression (pre-

TD), explaining nearly half of the total variance at the time of TCG. Similar patterns

of differences are found for the low-level absolute vorticity and upper-tropospheric

temperature anomalies.

An additional sensitivity simulation removing the latent heat of fusion associ-

ated with deposition results in significant changes to the TCG process. It is shown

that the fusion heating occurring during deposition is important for the upper-

tropospheric thermodynamic changes occurring during TCG and thus, yields fun-

damental changes to structure and intensity of deep convection. Overall, removing

fusion heating from deposition results in a weaker MSLP disturbance and one that

is not self-sustaining.
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Chapter 1: Introduction

Tropical cyclogenesis (TCG), the transition of a non-developing tropical distur-

bance into a developing one, continues to be one of the least understood processes in

tropical meteorology today. The formation of tropical depressions (TDs), which un-

der favorable conditions grow into tropical storms (TSs), has many different routes,

ranging from large-scale attributes such as African Easterly Waves (AEWs) to small-

scale features taking place in mesoscale convective systems (MCSs). In particular,

roughly 20% of tropical waves in the north Atlantic and eastern Pacific basin become

TSs (Frank 1970). Our ability to distinguish the 20% of developing disturbances

from the remaining non-developing disturbances in terms of factors responsible for

their development is limited due partly to the lack of high-resolution observations

at the birthplace and partly to the deficiencies in current numerical weather predic-

tion models. Numerous theories exist to describe the multi-scale interactions that

take place during TCG, but unfortunately, it has not been until recently that such

theories could be validated with field campaigns and high-resolution models.
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1.1 Dynamics and thermodynamics of tropical cyclogenesis

Previous studies have referred to TCG as a two-stage problem: a) the pre-

conditioning of a meso-α and synoptic environment and b) the construction and or-

ganization of a meso-β-scale tropical cyclone (TC) vortex (Karyampudi and Pierce

2002; Wang et al. 2010a). While these two stages might seem disjoint, they actu-

ally can occur simultaneously. The first stage involves the general environmental

characteristics being favorable, such as weak vertical wind shear (VWS), warm sea

surface temperatures (SSTs), sufficient column moisture content and a low-level

cyclonic rotation (Gray 1968). A vast number of synoptic-scale phenomena can

provide favorable conditions for the development of TDs, ranging from equatorial

waves (Schreck et al. 2012) to westerly wind bursts (Hogsett and Zhang 2010), in-

tertropical convergence zone (ITCZ) breakdowns (Kieu and Zhang 2009), monsoon

depressions (Harr et al. 1996), and AEWs (Dunkerton et al. 2009; Vizy and Cook

2009). The north Atlantic basin is dominated by storms forming from AEWs in

the main development region (MDR), even though a slim number of AEWs spawn

named TSs.

A growing number of previous studies have attempted to examine the second

stage of TCG with higher quality observations and modeling data. Recent studies

in the Atlantic and east Pacific basins have found an intimate relationship between

TCG and AEWs (Dunkerton et al. 2009; Montgomery et al. 2010; Vizy and Cook

2009; Wang et al. 2010a) and conclude that AEWs appear to be a common type

of precursor disturbances for north Atlantic TCs. However, such formation is still
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somewhat a mystery given the lack of understanding of multi-scale interactions

taking place during TCG. The role of the AEW has recently been shifted to “parent”,

incubating the growth of mesoscale convective vortices (MCVs) (Dunkerton et al.

2009). The concept revolves around the notion that the pre-depression perturbation

is protected dynamically from adverse environmental conditions such as dry air or

large VWS.

This theory has been further advanced by the marsupial pouch paradigm

(Dunkerton et al. 2009; Montgomery et al. 2010; Wang et al. 2010a), which suc-

cinctly theorizes the preferred TCG location within an AEW. For this location to

be identified using the paradigm, the AEW must be put into a co-moving reference

frame in which the intersection of its trough axis with its critical latitude, defined

as the latitude where the zonal wind equals the phase speed of the AEW, marks

the AEW’s approximate pouch center and the preferred location for development.

Mesoscale perturbations that can enter this area defined by the pouch can undergo

favorable development, thus providing a link between the AEW and the mesoscale

perturbations. The depth and vertical alignment of the pouch is also important for

development, as shown by Wang et al. (2012). Since the horizontal structure and

center of the pouch depend on the phase speed of the AEW, the variance of this

phase speed with height has significant implications on the growth of disturbance.

While the role of the AEW in TCG has been well described via the marsupial

pouch paradigm, the links between the AEW and mesoscale perturbations have been

less described in the literature. It has been hypothesized that the low-level critical

latitude of an AEW is a preferred location for mesoscale development (Dunkerton
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et al. 2009). This postulation has been investigated in limited fashion, but recent

work has shown promising results on the multi-scale interactions taking place during

TCG (e.g., Braun et al. 2013; Montgomery et al. 2012; Wang et al. 2010a,b).

Other studies have focused on AEWs and their complex structures in relation

to TCG. These structures include dynamical instabilities (Berry and Thorncroft

2005; Burpee 1972), wave structures (Burpee 1972; Hopsch et al. 2010; Thorncroft

and Hodges 2000) and convective development within AEWs, e.g., convectively gen-

erated potential vorticity (PV) anomalies (Berry and Thorncroft 2005). It has been

found that distinct differences between developing and non-developing AEWs in-

clude tropospheric moisture content, low-level vorticity growth and the strength (and

persistence) of deep convection within the AEW (Hopsch et al. 2010). Additionally,

Wang et al. (2012) have shown that a coherent vertical structure is an important

discriminating factor between developing and non-developing AEWs. The charac-

teristics of developing versus non-developing waves lend insight into whether or not

the waves are able to protect and sustain developing low-level vortices (hereafter

LLVs) into TDs. The LLV is defined herein, following Zhang and Fritsch (1987), as

significant concentration of cyclonic vorticity of at least the order of magnitude of

the local Coriolis parameter.

The meso-β-scale low-level cyclonic vorticity development during TCG has

been described by both the top-down (Bister and Emanuel 1997; Ritchie and Hol-

land 1997) and bottom-up paradigms (Hendricks et al. 2004; Montgomery et al.

2006; Zhang and Bao 1996), contrasting each other in how low-level cyclonic vor-

ticity arises. Within the top-down theory, the low-level cyclonic circulation is an
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extension of a preexisting mid-tropospheric cyclonic vortex, which may be reconsti-

tuted downward to create the surface circulation. The bottom-up theory suggests

that the low-level vorticity is spun up via deep convection, which through up-scale

aggregation, becomes an LLV. The bottom-up theory has been invigorated with

the concept of vortical hot towers (VHTs), which were first identified by Riehl and

Malkus (1958) as “hot towers” and further conceptualized by Simpson et al. (1998)

as non-rotating protected deep convective cores. Hendricks et al. (2004) and Mont-

gomery et al. (2006) revived VHTs with the addition of vortex-tube stretching in a

rotating environment. This augmentation to the bottom-up theory allows for VHTs

to be the “building blocks for TCG”, in which individual VHTs can conglomerate

to create or enhance the LLV. Recently, both modeling and observational studies

alike have been able to elaborate on VHTs and their role in TCG (Hendricks et al.

2004; Houze et al. 2009; Montgomery et al. 2006; Sippel et al. 2006).

1.2 Predictability of tropical cyclogenesis

While there have been improvements in producing forecasts of mature TCs,

virtually no improvements have been made in the prediction of TCG. More effort

has been given for improving the track and intensity forecast errors of a mature TC

using ensembles. These methods, unfortunately, have not been extended to forecast

TCG in any robust operational manner. Previous work has demonstrated that moist

convection has the highest uncertainty at all time and spatial scales in numerical

weather prediction (NWP) models when compared to other precipitation processes
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(Olson et al. 1995). Unfortunately, the underlying dynamics of TCG is cemented

in moist convective processes (Hendricks et al. 2004; Montgomery et al. 2006) and

thus, the predictability of TCG is rooted in the predictability of moist convection.

While the majority of the previous discussion has elaborated upon TCG through

modeling and observational studies, very little work has investigated TCG using a

particular niche of modeling studies: ensemble simulations. A notable study of

Sippel and Zhang (2008), who conducted short-range ensemble forecasts on a non-

developing tropical disturbance in the Gulf of Mexico during the 2004 North Atlantic

hurricane season, assessed the differences between ensemble members using a linear

correlation to generate statistical sensitivities of storm intensity changes to specific

meteorological parameters. Dynamical differences between ensemble members were

then inferred from these sensitivities. The work discovered that the presence of deep

moisture and high convective available potential energy (CAPE) are the two most

important factors in the initial conditions (ICs), which combine to yield a more

active spin-up in the first 6-12 h of integration. Beyond this spin-up period, they

demonstrated that the ensemble spread increased due to differences in convection

and the wind-induced surface heat exchange (WISHE; Emanuel et al. 1994) mech-

anism that some members utilized. Snyder et al. (2010) investigated the National

Centers for Environmental Prediction (NCEP) global ensemble forecast system in

predicting the TCG and evolution of five TCs and two non-developing systems dur-

ing the NASA African Monsoon Multidisciplinary Analyses (NAMMA). They found

that the ensemble system predicted TCG of three strong storms that formed within

AEWs, but failed to predict TCG for two weaker storms. Their study suggested

6



that the accuracy of TCG forecasts from the global ensemble was 50% for forecasts

initialized in the pre-genesis phase. In addition, Enomoto et al. (2010) found that

the ensemble spread increased prior to TCG, as the ensemble solutions diverged in

the intensity and timing of TCG.

Obviously, a statistical approach to making inferences on the dynamics and

thermodynamics (e.g., surface changes) of TCG can provide a more holistic view

of the ensemble forecasts. Sippel and Zhang (2008) employed a linear correlation

analysis, following Hawblitzel et al. 2007, to generate statistical sensitivities of mean

sea-level pressure (MSLP) changes and isolated variables that are responsible dy-

namically for the changes. More recently, studies have used ensemble sensitivity

analyses (Ancell and Hakim 2007; Chang et al. 2013; Gombos et al. 2012; Torn and

Hakim 2008; Zheng et al. 2013) to examine how a particular forecast metric depends

on the ICs. Ensemble sensitivity uses a linear correlation between a chosen forecast

metric and selected meteorological parameters to generate a statistical sensitivity

of the forecast metric for previous forecast times and the ICs. Instead of using

just an individual ensemble member, the analysis is able to use all ensemble mem-

bers, yielding the ability to make inferences about what meteorological parameters

the whole complement of ensemble forecasts are sensitive to. Ensemble sensitivity

has been shown to be useful in short and medium range forecasts for mid-latitude

applications (Chang et al. 2013; Zheng et al. 2013) as well as TC track forecasts

(Gombos et al. 2012), even with the assumption of linearity. The selection of a

forecast metric has varied across previous studies, ranging from selecting particular

cyclone parameters (e.g., MSLP) to the principal components (PCs) of empirical
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orthogonal functions (EOFs), whose use has produced promising results (Chang

et al. 2013; Gombos et al. 2012; Zheng et al. 2013). Recently, the use of ensemble

sensitivity analyses via EOFs was extended by Torn and Cook (2013) for two TCG

cases from the 2010 north Atlantic hurricane season. Their results depicted that the

forecasts of TCG were sensitive to select, but different parameters. The first storm

investigated, Danielle, was most sensitive to upper-level divergence and deep-layer

(e.g., 850-200 hPa) VWS. In contrast, the second storm, Karl, was more sensitive to

a coherent large-scale vortex structure in addition to a sensitivity to the magnitude

of VWS. Such differences between two storms in the same hurricane season truly

depict the complexity in understanding TCG and related processes across all spatial

and time scales.

1.3 Objectives of this research

Our work herein focuses on investigating the AEW, multi-scale interactions,

and mesoscale processes associated with TCG. Additionally, we investigate the pre-

dictability of TCG and what mechanisms are likely to dictate the predictability of

a given TCG event. These topics for investigation are critical for understanding

TCG more thoroughly and represent significant gaps in our current understanding.

Specifically, our work aims to fill in the gaps on the current knowledge of TCG with

the following overarching goals:

(i) Investigate the role of the AEW, mesoscale disturbances, and their interactions

during tropical cyclogenesis in the context of the marsupial pouch paradigm;
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(ii) Explore the connections between MSLP falls, low-level vorticity development,

deep convection, the AEW, and upper-tropospheric processes;

(iii) Study the dominant mechanisms (e.g., triggers) that cause tropical cyclogenesis

to occur;

(iv) Investigate the sensitivity of tropical cyclogenesis to ice cloud microphysics.

We explore the genesis of Hurricane Julia from the 2010 north Atlantic hurri-

cane season to investigate the aforementioned goals. This storm represents a com-

plex TCG case within an strong AEW, enabling the investigation of mesoscale

processes within the protective nature of the AEW under the marsupial pouch

paradigm. Naturally, our selection of this storm is influenced by the large collection

observational data obtained through Genesis and Rapid Intensification Processes

(GRIP; Braun et al. 2013) and the Pre-Depression Investigation of Cloud-systems

in the Tropics (PREDICT; Montgomery et al. 2012), two major observational cam-

paigns that occurred during the 2010 north Atlantic hurricane season. The objec-

tives are achieved through the analysis of observational data, and most importantly,

multiple 66-h cloud-resolving simulations of Julia during its pre-tropical depression

(pre-TD) stage using the Weather Research and Forecasting (WRF; Skamarock et al.

2005) model with the finest 1-km horizontal resolution.

To achieve the goals, the following methods and objectives are used to examine

the genesis of Hurricane Julia:

(i) Generate a high-resolution WRF simulation on the genesis of Hurricane Julia

to:
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• Document the large-scale environments, including the SST distribution,

VWS, cloud distribution, and the life cycle of the AEW, and the evolution

of Hurricane Julia;

• Analyze the development of meso-α-scale surface pressure falls and an

LLV leading to TD Julia within an AEW;

• Document the dynamic and thermodynamic changes to the upper tropo-

sphere during tropical cyclogenesis;

• Demonstrate the interconnectedness of the AEW, deep convection, upper

troposphere, surface pressure falls and the LLV during tropical cyclogen-

esis.

(ii) Create high-resolution ensemble forecasts on the tropical cyclogenesis of Hurri-

cane Julia using the coupled WRF and local ensemble transform Kalman filter

(LETKF) system (Hunt et al. 2007; Miyoshi and Kunii 2012) to:

• Compare the ensemble forecasts with the control and observations;

• Identify the fundamental synoptic-scale and mesoscale differences between

developing and non-developing ensemble members with an emphasis on

upper-level warming, the outflow layer, and convective development.

• Quantify the disagreements between the ensemble members for several

parameters such as MSLP, the upper-tropospheric outflow layer, and deep

convection.

• Use a series of EOFs to isolate the parametric patterns of ensemble vari-
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ance for MSLP and low-level absolute vorticity;

• Calculate ensemble sensitivities to provide statistical inferences about

which meteorological processes might be responsible for the MSLP differ-

ences with a focus on upper-tropospheric thermodynamic changes versus

WISHE;

• Identify the dominant ensemble forecast patterns for disagreement of

upper-tropospheric thermal anomalies

• Diagnose the sensitivity of upper-tropospheric temperature variance to

the upper-tropospheric divergent outflow layer and deep convection;

• Analyze the ensemble variability of deep convection.

(iii) Conduct high-resolution microphysics sensitivity WRF simulations on the trop-

ical cyclogenesis of Hurricane Julia to:

• Determine the importance of depositional heating for the development of

upper-tropospheric warming during TCG;

• See to what extent homogeneous freezing contributes to the upper-tropospheric

warming taking place during TCG;

• Diagnose what impacts, if any, the changes in cloud microphysics has

on the evolution of deep convection and the vertical motion field when

compared to the control.

The thesis is organized as follows. Chapter 2 depicts the results on the genesis

of Hurricane Julia utilizing a high-resolution control simulation to investigate the
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role of the AEW during TCG in addition to the evolution of mesoscale processes.

Chapter 3 expands upon the results of chapter 2 by investigating TCG using the

results of high-resolution ensemble forecasts on the TCG case. Chapter 4 elaborates

on the sensitivity of TCG to ice cloud microphysics. Most of the above materials are

re-organized based on the publications of Cecelski and Zhang (2013), Cecelski et al.

(2014a), and Cecelski and Zhang (2014b). Some concluding remarks and future

work are given in the final chapter.
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Chapter 2: Genesis of Hurricane Julia

2.1 Storm overview

The National Hurricane Center (NHC) declared Julia a TD at 0600 UTC 12

September 2010 (hereafter 12/0600). Six hours after gaining TD status, Julia quickly

became a TS. The genesis came as a surprise to NHC forecasters even with long-

range guidance depicting Julia’s formation several days prior (Beven and Landsea

2010). Hurricane Julia was the strongest north Atlantic hurricane east of 40◦W when

it reached a central minimum MSLP (PMIN) of 948 hPa at 15/1200. Even with this

remarkable statistic, Hurricane Julia was a small, compact storm that was dwarfed

by the much larger Hurricane Igor, which formed just days prior. Both storms

took place during the GRIP and the PREDICT projects, which provided initial

analysis resources for the investigation of Hurricane Julia from its pre-TD stage.

The AEW that Julia formed within could be traced back to 8/0000 (96 h prior

to genesis) as a well-defined circulation using 600-hPa relative vorticity (Fig. 2.1).

The westward progression of the wave is estimated to have an average phase speed

(Cp) of 8.0 m s−1, which is used for the co-moving frame of reference for the rest of

this investigation. The selection of this phase speed is calculated using the 600-hPa

13



Figure 2.1: Hovmöller diagram of ERA-Interim 600-hPa relative vortic-
ity (shaded, ×10−5 s−1) and meridional wind (contoured at intervals of 4
m s−1) averaged between 8◦ and 13◦N during the period of 0000 UTC 8 -
1800 UTC 12 Sep 2010. The phase speed of the AEW is estimated as Cp
= −8.0 m s−1. “Julia” and “Igor” mark the cyclonic vorticity associated
with Hurricanes Julia and Igor, respectively.

cyclonic vorticity Hovmöller analysis (Fig. 2.1) in conjunction with similar analyses

from the WRF data (not shown). The most persistent closed circulation in the

co-moving frame was found at 600 hPa, and thus, is level used for the phase speed

calculation of the AEW. We define TCG as the time when the NHC declares Julia

a TD in conjunction with satisfying the condition of a closed MSLP isobar on a

standard 4 hPa contouring interval of sufficient size. The “sufficient size” constraint

reassures that we don’t declare TCG prematurely as a transient mesoscale feature

with a closed isobar.
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Hurricane Igor developed in close proximity to Julia, becoming a TD at 08/0600

(Fig. 2.1). An examination of Rossby wave energy dispersion using methods similar

to Li and Fu (2006a) and Li et al. (2006b) indicates little impact of Igor on the gen-

esis of Julia (not shown). Given the strength of the AEW, it is not surprising that

Hurricane Igor did not produce significant impact on the genesis of Julia. Perhaps

its only possible impact on the TCG of Julia involved oceanic upwelling causing

cooler waters to the south-southeast of the Cape Verde Islands.

At 10/0000, the AEW exhibited a vertically tilted closed circulation in the

co-moving frame as demonstrated by the circulation centers in Fig. 2.2. Namely,

the circulation center at 600 hPa (“X”) is seen being displaced well eastward from

the upper-tropospheric circulation center (“X400”) where the cyclonic relative vor-

ticity is maximized (Fig. 2.2b). Its closed circulation is identifiable down to 825

hPa (“X825”) with an open circulation below. The horizontal distance between

the upper-tropospheric circulation (“X400”) and the lower-tropospheric disturbance

(“X825”) is over 400 km, a testament to the complexity of the wave. The maximum

cyclonic vorticity near 400 hPa is substantially higher than what has been previ-

ously observed for AEWs, which usually display maximum between 600 and 700

hPa for AEWs equator-ward of 15◦N (Thorncroft and Hodges 2000). The westward

tilt with height of the vorticity structure is accompanied by a similar thermody-

namic profile, as marked the “W” (“C”) representing the warming (cooling) above

(beneath) the tilted cyclonic vorticity maximum (Fig. 2.2b). The 600-hPa cyclonic

vorticity is mainly due to horizontal shear on the southern side of an African east-

erly jet (“AEJ”, Fig. 2.2a,c). Baroclinic and barotropic instability can be inferred
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from the reversal in the meridional PV gradient maximized near 400 hPa and to

a lesser extent in the lower troposphere (Burpee 1972; Charney and Stern 1962).

The combined baroclinic-barotropic instability on the synoptic scale appears to be

favorable for the amplification of any mesoscale disturbance within the AEW.

The AEW under study moved due west over the 54-h period prior to TCG,

traversing over the Guinea Highlands before heading over the eastern north Atlantic

ocean (Fig. 2.3). Before its coastal passage, the AEW was dominated by sporadic

weak convection (Fig. 2.4a) which quickly aggregated to become a large MCS as

it completely moved over water at 11/1200 (Fig. 2.4b). Concurrently, the Dakar

(GOOY) rawinsonde showed strong easterly winds in excess of 25 m s−1 from 925

to 700 hPa (not shown) as the wave and related convection strengthened during

passage. Julia quickly formed within the AEW, becoming a TD only 18 h after

the wave traversed the west African coastline. By the TCG time the MCS evolved

further, exhibiting a cyclonic cloud pattern (Fig. 2.4c) and a much more TS-like

storm by 18/1200 (Fig. 2.4d).

Such a short period from wave to TD has also been noted by Hopsch et al.

(2010), who found that fast TCG from easterly waves have higher tropospheric

moisture content and larger low-level cyclonic vorticity than those of non-developing

waves during coastal passage. A 500 km × 500 km area-averaged time series sur-

rounding the storm center, given in Fig. 2.5, shows that Julia’s formation is con-

sistent with the characteristics of fast TCG from an AEW. The simulated pre-TD

is initially tracked using the 600- and 700-hPa circulation in the co-moving frame-

work with large absolute vorticity and later using the PMIN center when a mesolow
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Figure 2.2: (a) ERA-Interim 600-hPa relative vorticity (shaded, ×10−5

s−1), zonal wind (contoured at intervals of 2 m s−1), and co-moving
streamlines valid at 0000 UTC 10 Sep. “X” represents the intersection
point of the 600-hPa trough axis and critical latitude. “X400” and “X825”
represent the locations of the AEW circulation centers at 400 and 825
hPa. The dotted lines marked by W-E and S-N represent vertical cross
sections shown in (b) and (c). The approximate location of the African
easterly jet is marked by “AEJ”. (b) Vertical cross section of cyclonic
relative vorticity (shaded, ×10−5 s−1) and temperature deviation (con-
toured at intervals of 0.25◦C). The temperature deviation is calculated
as the difference from the mean temperature at each respective level.
The peak warmth and coldness associated with the AEW are marked
with “W” and “C”, respectively. (c) Vertical cross section of meridional
potential vorticity gradient (shaded, ×10−12 m s−1 K kg−1) and zonal
wind (contoured at intervals of 4 m s−1). AEJ represents the location of
the African easterly jet.

becomes traceable. Specifically, precipitable waters (PW, Fig. 2.5a) steadily in-

creased as the wave progressed off shore, with the strongest rises occurring when

the storm is completely over water after 11/1200. Deep-layer VWS (850-200 hPa

layer) weakened during the period and remained under 6 m s−1 for the 36 h leading

up to TCG (VWS, Fig. 2.5a). Post-genesis, VWS increased again to above 8 m s−1,

possibly limiting the intensification of Julia somewhat. Cyclonic vorticity growth

was predominately located at 600 hPa for the majority of the period prior to TCG,

which is consistent with vorticity development in a baroclinically and barotropically

unstable AEW (Hopsch et al. 2010). After 12/0000, the vorticity difference between

925 and 600 hPa changes sign, signifying the initiation of low-level cyclonic vor-

ticity growth associated with the onset of TCG (Fig. 2.5b). Meanwhile, the AEW

under study encountered sufficiently warm SSTs for tropical development, being at

or above 27◦C.

18



Figure 2.3: The WRF model domain configurations: boxes D1, D2 and
D3 show the domain with the horizontal resolution of 9, 3 and 1 km,
respectively, with the initial and final position of the moving domain
D3 also given. The WRF-simulated track (square marks) versus the
best fixes track (circle marks) from 0600 UTC 10 (10/0600) to 1800
UTC 12 Sep are overlaid. The NOAA OI SSTs (◦C, shaded) and ERA-
Interim 600-hPa co-moving streamlines at 0000 UTC 10 September are
also overlaid.
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(a) 10/1200

(b) 11/1200

(c) 12/0600 (TD)

(d) 12/1800 (TS)
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Figure 2.4: METEOSAT-9 IR imagery for four stages of Hurricane Ju-
lia: (a) sporadic convection within the AEW at 1200 UTC 10 Sep, (b)
well-defined MCS within the AEW at 1200 UTC 11 Sep, (c) tropical
depression (TD) at 0600 UTC 12 Sep and (d) tropical storm (TS) at
1800 UTC 12 Sep 2010.
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2.2 Control model description

To investigate the mesoscale processes associated with TCG, a control sim-

ulation is conducted using Version 3.2.1 of the fully compressible, nonhydrostatic

mesoscale WRF model with Advanced Research (ARW) core (Skamarock et al.

2005). Three nests with horizontal resolutions 9, 3, and 1 km, as depicted by the

boxes given in Fig. 2.3 (D1, D2, and D3, respectively) are utilized. These nests have

36 vertical levels and a model top set of 50 hPa with enhanced resolutions in the

lower and upper troposphere to gain greater resolution where the confluent and dif-

fluent motions are most present during TCG. The WRF 66-h simulation is initialized

at 10/0000, i.e., 54 h prior to the named TD of Julia, and ends 12/1800, when the

storm became a TS. Such an initialization time 54 h prior to TCG enables the control

to capture the evolution of atmospheric flow from being mainly mid-tropospheric

(i.e., the AEW) to lower-tropospheric (i.e., the developing MSLP disturbance) with

minimal likelihood of inaccurately capturing the TCG event. The lateral bound-

ary and initial conditions are supplied by the European Centre for Medium-Range

Weather Forecasts Re-Analysis (ERA-Interim) reanalysis except for SSTs that are

initialized by the National Oceanic and Atmospheric Administration (NOAA) Opti-

mal Interpolation high-resolution SST data set (Reynolds et al. 2007)1. It should be

noted that the simulation includes the NOAA OI SST data in order to gain higher

spatial resolution information associated with the passage of Hurricane Igor as Julia

1NOAA OI SSTs remain fixed for the integration as the SSTs remain nearly constant over the

66 h period.
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Figure 2.5: Time series of (a) deep-layer vertical wind shear (VWS)
between 200 and 850 hPa and precipitable water (PW) and (b) 925-600
hPa relative vorticity difference (ζ925 − ζ600) and SST during the 66-h
period from 0000 UTC 10 Sep to 1800 UTC 12 Sep. Each variable is
calculated by averaging its field within a 500 km × 500 km area from
the storm center using ERA-Interim data.

passed over water previously traversed by Igor. Without using high-resolution SST

data, the simulated Julia is too strong post-TCG given the coarser-resolution SST

data not being able to resolve the cooler SSTs to the south-southeast of the Cape

Verde Islands associated with Igor’s passage. This indicates the importance of air-

sea interactions (e.g., strengthening by WISHE) for Julia when it intensifies into a

TS by the end of the simulation. Obviously, the air-sea interactions prior to and at

the time of TCG are limited given the weakness of the low-level winds.

The 9- and 3-km resolution domains incorporate simultaneously the Kain-
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Fritsch convection parameterization scheme (Kain 2004; Kain and Fritsch 1990) and

a cloud micro-physics scheme, while the former is bypassed in the 1-km resolution

domain. Upon initial experimentation, we came to the conclusion that there were

very little differences between two simulations with the 3-km domain having respec-

tive convection parametrized and explicitly represented. The simulation utilizes the

Thompson graupel 2-moment micro-physics scheme (Thompson et al. 2008, 2004),

the Rapid Radiative Transfer Model (RRTM) longwave radiation scheme (Mlawer

et al. 1997), the Dudhia (1989) shortwave radiation scheme, and the Yonsei Univer-

sity (YSU) planetary boundary layer (PBL) scheme (Noh et al. 2003).

The 1-km is a moving domain with 570 preset moves starting 9 h after the

initialization time. Easterly moves are conducted every 6 minutes to follow the

AEW and involves no movement of the domain latitudinally. Preset moves are used

since the vortex-following tool associated with the WRF has trouble following the

AEW with tracking levels at 600 hPa even given the relatively strong AEW.

2.3 Model validation

Overall, the WRF control simulation reproduces reasonably well the observed

track over the 66-h integration (Fig. 2.3). On average, the simulated track error

is 173 km, but its operational 36-h forecast did significantly better than the NHC

official (OFCL) forecast track error for the same time (Beven and Landsea 2010),

with a track error of 94 km compared to the OFCL forecast error of 133 km. The

intensification of pre-TD Julia was unremarkable, reaching a PMIN of 1007 hPa at
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Figure 2.6: Time series of the WRF-simulated storm intensity (square
marks) and the NHC best estimates (circle marks) for the minimum
MSLP (PMIN, closed marks) and z = 10-m maximum wind speed (VMAX,
open marks) from 0600 UTC 10 to 1800 UTC 12 Sep.

the TCG time as seen in observed PMIN estimates (Fig. 2.6). The simulated PMIN

and maximum wind speed at z = 10 m (VMAX) both agree well with the observed,

although they are not without discrepancies. One difference is that the simulated

surface vortex is 2 hPa weaker than the observed during the first 12 h of integration

and is 2 hPa stronger at TCG.

Two development stages can be identified from the PMIN changes: (i) TCG; and

(ii) significant intensification (SI) prior to and after 12/0600, respectively. Specif-

ically, the PMIN of the disturbance during TCG barely changes, with an average

deepening rate of 1 hPa day−1. In contrast, the SI phase begins with the deepening

rate increasing to 4 hPa day−1 until the storm becomes a TS, similar to the results

of Nolan (2007). The simulated MSLP prematurely enters SI at 12/0000, with a
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deepening of 2 hPa for the 6 h prior to the storm becoming a named TD. Later in

the SI stage, the simulated PMIN shows brief weakening before restrengthening at

12/1800. This reprieve is supported by the decrease in SSTs and increase in VWS

shown in Fig. 2.5, which inhibit further intensification. While these developmental

stages are evident in PMIN, they cannot be seen from the 10-m maximum wind speed

as both the observations and simulation show a nearly consistent increase during

the 66-h integration.

Fig. 2.7 shows the simulated cloud patterns of the AEW (and Julia) that

should be compared to the observed METEOSAT-9 Infrared (IR) imagery given in

Fig. 2.4. The simulated brightness temperatures are calculated using the Unified

Post Processor (UPP), which invokes the Community Radiative Transfer Model

(CRTM) to produce brightness temperatures at the top of the atmosphere. After

12 h into the integration, the model reproduces the locations of deep convection

along the coastline, indicating reasonable forcing within the AEW. However, the

simulated cloud field associated with the AEW appears to be weaker and more

fragmented than the observed (cf. Figs. 2.4a and 2.7a), due partly to the lack of

precipitation spin-up and partly to the simulated upper-level cloud ice content that

may be much less than that in nature. The differences between the simulated

and observed cloud patterns decrease afterward. By 11/1200 (cf. Figs. 2.4b and

2.7b), the simulated brightness temperatures show well the convective development

along the coastline, although it does not look like the round-shaped MCS as seen in

METEOSAT-9 IR imagery. The WRF nearly reproduces the observed brightness

temperatures of TD Julia at 12/0600. Even with the slow convective development
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during the early stages, the WRF simulates a TS-like cloud pattern at 12/1800 that

compares favorably with the observed (Fig. 2.7d).

Since we are concerned with mesoscale development in addition to the AEW,

Fig. 2.8 compares the simulated hourly precipitation rates (mm h−1) to the Tropi-

cal Rainfall Measuring Mission (TRMM) data during two times during TCG. The

TRMM data consists of precipitation rate estimates generated every 3 h on a 0.25◦ ×

0.25◦ grid between 50◦S and 50◦N. The overall spatial characteristics of the TRMM-

estimated precipitation rates compare favorably with the simulated, although some

minor discrepancies on the location of heavy precipitation rates are evident.

At 12/0300, the TRMM estimate depicts a more coherent, MCS-like structure

while the simulated shows two distinct precipitation areas with little convective de-

velopment in between (Fig. 2.8a). Even with this disagreement, the intensity of

the simulated rates fares well with the TRMM, highlighting small regions of intense

precipitation in excess of 30 mm h−1. By 12/0600, the simulated rates reproduce

the MCS-like structure shown in TRMM estimates with little spatial disagreement.

However, the simulation seems to be overestimating the precipitation rates on the

southern end of the feature with a broad swath of 30 mm h−1 or greater rates

(Fig. 2.8b). This discrepancy is contrasted by a reasonable estimate of the heavy

precipitation rates on the northern portion of the feature shown in TRMM esti-

mates. Overall, the characteristics of the TRMM precipitation rates are reasonably

reproduced by the simulation for the 3-h period between when discounting minor

spatial displacements and the differences in resolution between the two data sets.
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Figure 2.7: As in Fig. 2.4, except for the WRF-simulated brightness
temperature (K).
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Figure 2.8: Comparison of the WRF-simulated hourly precipitation rate
(shaded, mm h−1) and TRMM-adjusted merged-infrared precipitation
rate (contoured at intervals of 2.5, 5, 10, 15, 20, 25, 30 and 35 mm h−1)
for (a) 0300; and (b) 0600 UTC 12 Sep. The 3-km horizontal resolution
WRF data is used while the TRMM data has a horizontal resolution of
0.25 degrees × 0.25 degrees.
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2.4 Low-level development and upper-level processes

After verifying the simulated storm against the observed, we can use the high-

resolution simulation data to examine the development of some non-observable fea-

tures, especially the meso-β-scale LLV that becomes TD Julia. In this section, we

show that the LLV develops within the parent AEW, but they are not directly col-

located until into the simulated storm’s SI stage. In particular, we show that the

LLV formation results from persistent deep convection and its generated vortices,

upper-tropospheric warming and vorticity growth in the lower troposphere. The

AEW serves as the parent in a deep layer, which is similar to that described by the

marsupial pouch paradigm (Dunkerton et al. 2009; Montgomery et al. 2010; Wang

et al. 2010a), protecting the upper-level warming and the LLV from adverse environ-

mental conditions while providing a preferred location for mesoscale development.

2.4.1 Connecting the AEW to MSLP falls, upper-level warming and

the LLV

Fig. 2.9 presents the evolution of meso-α-scale MSLP falls, a meso-β surface

low (marked by “L”), the LLV, and AEW. A closed MSLP isobar (“L”) first appears

within the AEW at 12/0000 (Fig. 2.9a). This closed isobar, however, is considered

to be a meso-β low rather than TD Julia, since its size is comparable to other

meso-β features. Even though the simulated storm is not a TD-scale disturbance

until 12/0600 (Fig. 2.9c), the remainder of our discussion will refer to the simulated
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SI starting at 12/0000 since an intensifying surface low is identifiable. Initially,

the mesolow and the AEW center (marked by “X”) are separated by a distance of

approximately 150 km (Fig. 2.9a), remaining at this distance until 12/0600 as the

surface low deepens. After 12/0600, the distance between the two centers shrinks

to roughly 100 km (Fig. 2.9c) with the features becoming completely collocated at

12/0900 (Fig. 2.9d).

The change in distance between the disturbances over the 9-h period can be

more clearly seen from the vertical vorticity structures depicted by Figs. 2.9e-h.

Initially, the dominant vorticity feature is that of the AEW (its peak denoted by

“A”), maximizing in strength between 700 and 400 hPa at 12/0000 (Fig. 2.9e). At

12/0300, a deep upright column of cyclonic vorticity associated with the meso-β

surface low emerges at the edge of the tilted vorticity column associated with the

AEW with a peak magnitude quickly dwarfing that of the AEW (Fig. 2.9f). Given

the magnitude of the cyclonic vorticity associated with the mesolow, it is evident that

the vorticity structure can be considered an LLV. In contrast, the AEW’s vorticity

exhibits little change during the hours prior to TCG, let alone the past 54 h (cf.

Figs. 2.2b and 2.9e-h). While the LLV is intensifying with time, it begins to merge

with the vertically tilted AEW vortex, beginning in the mid-to-upper troposphere.

Although the mesolow signifies the beginning of the SI stage at 12/0000 (Fig. 2.6),

the LLV completely merges into the AEW vortex center by 12/0900 (Figs. 2.9d and

2.9h).

Even with the near constant intensity of the AEW over the 54-h period, its

MSLP field and intensity show significant changes due to the development of deep
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Figure 2.9: (a)-(d) The simulated 600-hPa cyclonic relative vorticity
(shaded, ×10−5 s−1), co-moving streamlines and MSLP (contoured at
intervals of 1 hPa). “L” represents the center of a developing mesolow
while the intersection of the 600-hPa trough axis and critical latitude is
marked with the “X”. The dotted line designates the west-east cross sec-
tions shown in (e) through (h). (a)-(d) span the same longitudes listed
below (d). (e)-(h) Longitude-height cross sections of cyclonic relative
vorticity (shaded, ×10−5 s−1), and temperature deviations (contoured
at intervals of 0.5◦C) that are calculated by subtracting the mean tem-
perature at each level of the cross-section. “A” represents the location of
the peak cyclonic vorticity associated with the AEW while “W” marks
the location of the upper-level warming. The cross section length in
(e) through (h) is approximately 400 km starting at 21.5◦W and end-
ing at 17.5◦W, with the exception of (h), which extends from 23.5◦W
to 19.5◦W. The cross sections are created using a 3-slice average. Data
from the WRF 9-km resolution domain is used to create (a) through (h).

convection (to be shown later), with the majority of changes taking place between

12/0000 and 12/0900. In addition to the local MSLP falls associated with the meso-

β surface low (“L”), one can see spatial expansion of the MSLP falls with time from

the meso-β to meso-α scale. This is easily exemplified by the 1008-hPa isobar in

Figs. 2.9a-d, which continually expands until 12/0600 before contracting slightly at

12/0900.

Further, Figs. 2.9e-h show that the intensification of the meso-β surface low

and meso-α MSLP falls are accompanied by thermodynamic changes in the upper

troposphere. Initially, the only evident thermodynamic profile is that of the AEW,

with a tilted warm layer above the mid-level vortex marked by “W” in Fig. 2.9e. This

tilted profile quickly diminishes as warmth in excess of 2◦C takes place directly above

the developing LLV (“W”, Fig. 2.9f), connecting with the warm layer above the

mid-level vortex associated with the AEW. As the warming intensifies at 12/0900,
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it continues to merge with the thermodynamic profile associated with the AEW

until the AEW profile is no longer identifiable and the upper tropospheric warmth

exceeds 2.5◦C (Fig. 2.9h).

2.4.2 Meso-α and meso-β MSLP falls and their relationship to upper-

level warming and deep convection

While the preceding subsection demonstrates some relationship between the

AEW, the meso-β surface low, LLV, and upper-tropospheric warming, an obvious

question to ask is: how do these features interact? The following will answer this

question in addition to determining what role, if any, the warming seen in Figs. 2.9e-

h has on meso-α and meso-β MSLP falls. In this regard, we note the observational

study of Hoxit et al. (1976) showing that upper-level warming (in the 100- to 500-

hPa layer) associated with deep convection in mid-latitude MCSs could produce

surface pressure falls of 2 to 4 hPa h−1. They attributed meso-β-scale surface lows

to the hydrostatic warming aloft. Similarly, Zhang and Zhu (2012) have shown

the importance of the upper-tropospheric warming in TCG, demonstrating that

the warming prior to TCG accounts for the majority of the MSLP falls. They

hypothesize that the upper-tropospheric warming is produced by widespread deep

convection which detrains just below the tropopause and then by outward advection

through divergent flows. The following will only focus on the 3 h between 12/0300

and 12/0600, when the MSLP falls are the greatest at approximately 0.67 hPa h−1

(Figs. 2.9a-d) and the development of the LLV occurs.
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Figure 2.10: (a)-(d): The simulated 200-hPa temperature (shaded, ◦C),
co-moving streamlines and MSLP (contoured at intervals of 1 hPa) from
the 51-54 h integrations, valid at 0300, 0400, 0500 and 0600 UTC 12
Sep, respectively. The -52.5◦C isotherm is outlined in bold red to show
the expansion of the warmth while the 1006-hPa isobar is thickened to
demonstrate the expansion of the mesolow. “L” represents the center of
a developing meso-β surface low. (e)-(h): The simulated composite radar
reflectivity (shaded, dBz), 925-hPa cyclonic relative vorticity (contoured
at intervals of 5×10−5 s−1), co-moving streamlines, and AEW critical
latitude (magenta dashed line) for the same times as (a) through (d).
V1 and V2 represent the two main meso-β-scale vortices that become
the LLV. The intersection of the 925-hPa AEW trough axis with its
respective critical latitude is marked with the magenta “X”. Data from
the WRF 3-km resolution domain is used to create (a) through (h).

Figs. 2.10a-h show that the MSLP falls are consistently collocated with the

warmer air at 200 hPa that also resides along the AEW’s critical latitude at 925

hPa for the 3-h period. Further, these features are collocated with a region of active

convection shown in Fig. 2.8. We use the 1006-hPa isobar and the -52.5◦C isotherm

to help elucidate the relationship between changes in surface pressure and upper-

tropospheric warming. As the -52.5◦C isotherm expands outward over the period

into a meso-α-scale feature, so does the 1006-hPa isobar which nearly takes the

same shape and size as the warmer temperatures at 200 hPa. Within the meso-

α-scale MSLP falls, smaller meso-β and meso-γ PMIN centers reside beneath the

warmest temperatures at 200 hPa, with examples marked by “L” in Figs. 2.10a-d.

An exceptional occurrence of such a feature occurs at 12/0400 when a 1004-hPa

MSLP closed contour develops directly beneath 200-hPa temperatures in excess of

-49◦C (Fig. 2.10b). The concurrent development of the 200-hPa warming and the

meso-α MSLP falls supports the notion that the warming may be hydrostatically
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responsible for the intensity and size of the MSLP disturbance. These features can

be linked to the development, intensification and aggregation of convection along

the AEW low-level critical latitude, as is explained next via Figs. 2.10e-h.

It is seen in the composite radar reflectivity that the development of deep

convection occurs in the same regions as the warming at 200 hPa as well as along

the AEW’s low-level critical latitude (Figs. 2.10e-h). Since deep convection (either

as individual convective cells or an MCS) tends to move with the AEW when it

resides on the AEW low-level critical latitude (Dunkerton et al. 2009), it is able to

persistently detrain in the upper troposphere allowing for the warming to intensify

and advect radially outward as a storm-scale outflow develops. The streamline

analyses in Figs. 2.10a-d support the outward expansion of the warming in time, with

a storm-scale outflow developing by 12/0600. Initially, this outflow is less coherent

(e.g., at 12/0300) resulting in similar patterns of upper-level warming and surface

pressure falls. Once deep convection becomes organized along the AEW low-level

critical latitude, a storm-scale outflow develops, expanding the upper-tropospheric

warming and allowing for MSLP falls on the meso-α scale.

Figs. 2.10e-h show the relationship between the meso-β-scale surface pressure

falls and the development of low-level cyclonic vorticity. Initially, two noticeable

mesovortices (“V1” and “V2”, respectively) reside within meso-β-scale MSLP lows

and consequently, in regions where the PBL convergence is enhanced as evidenced

by the co-moving streamline analysis (Fig. 2.10e). The mesovortices intensify via

vortex stretching, noted by the presence of convection and related upward motions

(Figs. 2.10e-h). A notable characteristic of V2 is its radial movement along the low-
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level critical latitude (Figs. 2.10e-h). This vortex starts off nearly 200 km from the

AEW center at 12/0300, but cascades towards the AEW center along the critical

latitude as it begins to merge with V1 at 12/0600. The interaction of these two vor-

tices at 12/0600 represents the conglomeration and homogenization of the 925-hPa

cyclonic vorticity field resulting in the creation of the meso-β-scale LLV. Addition-

ally, the enhancement of the vortices is consistently along the critical latitude of

the 925-hPa AEW circulation near the pouch center (Figs. 2.10e-h), validating the

connection between the meso- and larger-scale circulations postulated by Dunker-

ton et al. (2009). Further, the LLV at 12/0600 also starts to take the shape of the

meso-β-scale surface low encompassed by the 1006-hPa isobar (Fig. 2.10h), hinting

that its amplification is partly explained by the surface pressure falls induced by the

warming aloft.

To further analyze the evolution of the upper-tropospheric warming, Fig. 2.11a

presents a 100 km × 100 km area-averaged time series following the storm center

of cyclonic vorticity and relative warming with respect to the vertical temperature

profile at 11/06002. Two distinct warming periods are evident in Fig. 2.11a: (i)

a shallow intense warming event in the layer above 250 hPa during the first 18

h with a peak intensity near 1.25◦C at 11/1500; and (ii) a deep layer warming

event in association with the onset of SI after 12/0000. The first warming period

is in good agreement with the early sporadic convection within the AEW when

the latter moves across the coastline (Figs. 2.7a,b) and the system is dominated by

2A 100 km × 100 km average is used to accurately capture the critical information related to

TCG as noted by Wang (2012).
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the mid-level cyclonic vortex (“AEW” in Fig. 2.11a). The localized nature of the

deep convection is relatively less efficient at generating larger-scale warming in the

upper-troposphere since a coherent storm-scale outflow is not present. Clearly, the

period of second warming period occurs with the onset of SI. This period is denoted

by steady warming in the 375- to 150-hPa layer (Fig. 2.11a), in agreement with the

warming shown above the developing meso-β surface low and LLV in Figs. 2.10e-h

and 2.9a-d. The magnitude and depth of the upper-tropospheric warming continues

to increase with an amplitude exceeding 1.5◦C at and after 12/0600. The evolution

of the upper troposphere is complemented by concurrent development of the LLV

as evidenced by the cyclonic vorticity development between 950 and 700 hPa at and

after 12/0300.

Quantifying the importance of the upper-level warming for surface pressure

falls, Fig. 2.11b is plotted following the procedures similar to those described in

Chen and Zhang (2013), in which (a) the MSLP is obtained by calculating the

hydrostatic equation from the tropopause downward using the total temperature

(i.e., the sum of the temperature profile at 11/0600 and the warming, curve WUW);

and (b) repeating (a) but excluding the upper-level warming enclosed by the dashed

lines, curve NUW. The control-simulated time series of MSLP (curve CTL) is also

given to facilitate the comparison between the two different calculations. Obviously,

the NUW time series struggles to reproduce the MSLP of the control simulation and

diverges from the other solutions after 11/0900. The differences between NUW and

CTL maximize after 12/0000 when the convective activity becomes more coherent

and the resulting warming begins to hydrostatically induce more pronounced MSLP
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Figure 2.11: (a) Time-height cross section of the simulated temperature
difference from the 30-h simulated (valid at 0600 UTC 11 Sep, shaded,
◦C) and cyclonic relative vorticity (contoured at intervals of 2×10−5

s−1) that are obtained using a 100 km × 100 km average surrounding
the storm center. Dashed lines represent the core of the upper-level
warming and “AEW” marks the peak cyclonic vorticity associated with
the AEW. (b) Time series of the 100 km × 100 km area-averaged MSLP
(hPa) from the WRF simulation (CTL) and two hydrostatic calculations
(NUW and WUW). The NUW hydrostatic calculation uses the vertical
temperature profile from 0600 UTC 11 Sep between the dashed lines in
(a) while WUW utilizes the 0600 UTC 11 Sep profile plus the tempera-
ture perturbations between the dashed lines seen in (a). The dotted line
in both (a) and (b) represent the time SI begins for the simulated storm,
0000 UTC 12 Sep. Data from the WRF 1-km resolution domain is used
to create both (a) and (b).
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falls. The difference between the two reaches a peak of nearly 10 hPa as the NUW

time series never develops a TD. Contrasting its counterpart, the WUW hydrostatic

calculation is nearly able to fully reproduce the CTL time series. The difference

between the CTL and WUW is never greater than 2.5 hPa, implying the importance

of the upper-tropospheric warming for MSLP falls and the intensification of the

meso-β surface low.

2.4.3 Development of the upper-level warming

After seeing a connection between upper-level warming, the meso-α-scale MSLP

falls, the meso-β-scale surface low and the LLV in the preceding subsections, we show

below how the upper-level warming forms. Chen and Zhang (2013) showed that adi-

abatic subsidence resulted in the development of an upper-level warm core during

the rapid intensification stage of Hurricane Wilma. While large-scale adiabatic sub-

sidence warming might be true for a mature TC, it remains unanswered how the

upper-tropospheric warming during TCG forms. Of particular interest herein are

the meso-γ-scale features, namely, convective bursts (CBs) and their influence on

the upper-level warming. Traditionally, CBs are defined as intense meso-γ convec-

tive cells with updrafts maximized in the upper troposphere. The method by which

a CB is defined is rather arbitrary, with the updraft velocity threshold being any-

where from 8 to 15 m s−1, as used in Chen and Zhang (2013). For our investigation,

we will designate a convective cell a CB when it is characterized by an updraft in

excess of 8 m s−1 at or above the freezing level (approximately 600 hPa).
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Focusing on 12/0000 (onset of SI, Figs. 2.12a,b), the meso-β-scale surface

low is characterized by embedded meso-γ-scale structures beneath upward motions

aloft (red shadings). An example of such a meso-γ-low and its associated upward

vertical motion is marked by “U1”. Applying our definition of CBs, it is clear that

many of the meso-γ structures are CBs, with some cells characterized by upward

velocities in excess of 10 m s−1 in the 275-175 hPa layer. Surrounding these CBs,

compensating subsidence (blue shadings) occurs in nearly indistinguishable storm-

scale outflow. Directly collocated with the CBs are large cloud ice mixing ratios

and warm temperatures within the 275-175 hPa layer (Fig. 2.12b). This collocation

suggests that these warm temperatures are associated with the latent heat of freezing

and deposition as cloud water freezes after being transported upward across the 0◦C

level and more water vapor is deposited on cloud ice particles aloft3. However, these

heating elements are localized to the outflow generated by individual CBs, which

are sporadically located within the meso-β surface low.

Vertical cross sections through the surface mesolow show that CBs transport

cloud water above the freezing level with heating in their cores (Figs. 2.13a,b).

At the intersection of the two cross sections (“I1”), a CB extending from the 0◦C

level (thick black line) to 100 hPa with upward velocities in excess of 10 m s−1 is

transporting large ice content to the upper troposphere. This characteristic is also

found in the core region of CB U1, but with cloud ice mixing ratios much larger

3Note that herein we distinguish that diabatic heating, which tends to accelerate updrafts, from

the warming caused by compensating subsidence since the former is often more transient than the

latter.
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Figure 2.12: (a) and (c): Simulated 275-175 hPa layer-averaged vertical
velocity (shaded, m s−1) and co-moving wind vectors (m s−1) with MSLP
(contoured at intervals of 1 hPa) overlaid for 0000 and 0600 UTC 12
Sep, respectively. (b) and (d): Simulated 275-175 hPa layer-averaged
cloud ice mixing ratio (shaded, g kg−1) and temperature (contoured at
intervals of 0.5◦C) with 925 hPa co-moving streamlines overlaid for the
same times as in (a) and (c), respectively. Dashed lines labeled A-A*,
B-B*, C-C* and D-D* represent the locations of vertical cross sections
shown in Fig. 2.13. Cross sections A-A* and B-B* are created along the
main axis of the MSLP disturbance while C-C* and D-D* are created
along the short axis of the MSLP disturbance. The other letters in
(a) and (c) represent the intersection of the respective cross sections (I1

and I2), the location of a CB and related PMIN (U1), and a location of
compensating subsidence warming (S1). I2 also represents an area of
compensating subsidence warming associated with a PMIN. Data from
the WRF 1-km resolution domain is used to create (a) through (d).
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in the 275 to 150 hPa layer. The presence of such high cloud ice content near the

tropopause suggests that the heating in this layer is more a result of the depositional

growth of ice rather than freezing, which is more efficient at heating the environment

(i.e., 2839 J g−1 for the former vs. 333 J g−1 for the latter, Rogers and Yau 1989).

This heating tends to accelerate updrafts and reduce the static stability of the upper

troposphere (which also reduces the Rossby radius of deformation). While heating

due to freezing is certainly taking place, this heating will be confined closer to the

0◦C level and has a smaller impact (but still important) on the thermodynamic

changes in the upper troposphere.

Fig. 2.12c shows the deepening and expansion of the meso-α MSLP falls and

meso-β surface low within a much more broad area of alternating upward and

downward motions in the upper troposphere at 12/0600. Embedded within the

meso-β-scale surface low are meso-γ-scale PMIN associated with both CBs as well as

compensating subsidence warming. An example of surface pressure falls induced by

subsidence warming is marked by “S1” in Fig. 2.12c while an example of a closed

low induced by subsidence warming occurs at the intersection of the two cross sec-

tions (“I2”). The aggregation of individual convective cells into an MCS along

the low-level critical latitude (Figs. 2.10e-h) has generated a meso-α-scale outflow

(cf. Figs. 2.10d and 2.12c), which expands the cloud ice particles over a meso-α-

scale area (Fig. 2.12d). This allows for deposition and freezing to occur over a

larger area, expanding the upper-level warming into the feature seen in Figs. 2.10d

and 2.12d. The storm-scale outflow is compensated by the development of a closed

circulation at 925 hPa with pronounced convergence taking place into the center of
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Figure 2.13: (a)-(d) Vertical cross sections of simulated vertical velocity
(shaded, m s−1), potential temperature (black contours at intervals of
4K), cloud ice mixing ratio (dashed contours at intervals of .001, .002,
.004, .008, .01, .02, .03, .04, .05, .06 and .07 g kg−1) and freezing level
(thick black line) for 0000 (a, A-A* and b, C-C*) and 0600 (c, B-B* and
d, D-D*) UTC 12 September with the cross section locations given in
Fig. 2.12 for their respective times. The letters have the same meaning
as in Fig. 2.12, representing the approximate locations of the respective
feature. Data from the WRF 1-km resolution domain is used to create
the vertical cross sections.
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the circulation (Fig. 2.12d). Comparing Figs. 2.12c and 2.12d, one can easily see

the similar spatial patterns between the warming in the 275-175 hPa layer and the

developing meso-β surface low. Given the prior evidence (Figs. 2.9-2.12), it is not

a stretch to believe that the warming aloft is responsible for the meso-β-scale low

and meso-α-scale surface pressure falls during the early hours of the simulated SI.

Figs. 2.13c and 2.13d show the same fields as those in the left column, except

for 12/0600. Large magnitudes of cloud ice mixing ratios continue to be prevalent

in concurrence with notable warming in the 275-150 hPa layer. This warming is

further exemplified by the changes to the vertical location of the 352K isentropic

contour, which initially resides approximately near 150 hPa at 12/0000, but dips

to near 200 hPa as the static stability of the upper troposphere reduces at 12/0600

(Figs. 2.13c,d). While individual CBs are still evident at 12/0600, the notable change

from 12/0000 is near the center of the storm (“I2”) with compensating subsidence in

excess of 2 m s−1 inducing warming (Figs. 2.13c,d). A second region of compensating

subsidence warming is seen on the flank of the meso-β surface low, as marked by

“S1” in Fig. 2.13c. This characteristic hints at the increasing role of subsidence

warming associated with an organized MCS.

It is evident that the majority of the upper-tropospheric warming is resultant

from latent heating due to deposition and freezing during the early stages of sim-

ulated SI. While we attribute the upper-tropospheric warming to a combination of

diabatic heating and compensating subsidence warming, with the prior more impor-

tant than the latter, the obvious rebuttal to this notion is the transient nature of the

heating. Certainly, latent heating is a transient feature that is realized through con-
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Figure 2.14: (a)-(c) Simulated 600-hPa co-moving streamlines (black)
and layer-averaged 275-175 hPa co-moving streamlines (gray) with the
Rossby radius of deformation (black circle) and storm center (“X”) over-
laid for 0000, 0600 and 0900 UTC 12 Sep, respectively. (d) Time series
of the Rossby radius of deformation (LR = NH/η) from 0000 to 1800
UTC 12 Sep calculated using 100 km × 100 km area-averaged data
from the 3-km resolution WRF simulation. (η is calculated using the
layer-averaged absolute vorticity between 1000 and 400 hPa, capturing
nearly all the vorticity growth of the developing disturbance as shown

in Fig. 2.11. N is calculated using N =
√

g
θ̄
dθ
dz

, where θ̄ is the area-

averaged 1000 hPa potential temperature, dθ
dz

is given by the differential
of 150 and 1000 hPa potential temperatures and height surfaces, and g
is the gravitational constant. H is calculated using H = RT̄/g, where
T̄ is the average temperature between 1000 and 150 hPa, R is the gas
constant for dry air and g is the gravitational constant.) Data form the
WRF 9-km resolution domain were used to create (a) through (c).
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vection, its positive buoyancy and the initial gravity wave response to disperse the

heating. However, it is quite evident that regardless of an “adjustment period” by

which gravity waves try to disperse the heating initially, the warming survives any

adjustment period that results in the system-scale signature as shown in Figs. 2.10

and 2.11. Elaborating on this, Fig. 2.14a-c shows the 600-hPa co-moving streamlines

(black), 275-175 hPa layer-averaged co-moving streamlines (gray), and the Rossby

radius of deformation (circle). In addition, a time-series of the Rossby radius of

deformation, LR = NH/η, where N is the Brunt Väisälä frequency, H is the scale

height, and η is the absolute vorticity, is given in Fig. 2.14d, showing a decrease in

LR takes place just prior to and after 12/0600. This reduction is consistent with

the intensification of low-level cyclonic vorticity (Fig. 2.11a, Frank 1987) and the

reduction of static stability in the upper-troposphere (Fig. 2.13).

For the entire 9-h period in Figs. 2.14a-c, the 600-hPa co-moving circula-

tion is on the order of or greater than the circumference created by LR. More

importantly, the storm-scale outflow in the upper-troposphere extends beyond LR,

allowing for the accumulation of the warming seen in Figs. 2.10-2.13 as the velocity

field adjusts to the mass perturbations. It is evident that near the LR, the out-

flow shows geostrophic adjustment, with a bend of the streamlines to the right. At

12/0000, when the system-scale outflow is less prevalent and LR is at its largest

of the three times compared, the warming struggles to become a system scale sig-

nature (Figs. 2.12a,b). This quickly changes as an MCS becomes well organized

(Figs. 2.10e-h) and a system-scale outflow begins to extend to near LR in the hours

prior to the simulated TD Julia (Fig. 2.14b). While the storm-scale inertial stabil-
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ity is low (as evidenced in the streamline analyses in Figs. 2.10a-d and 2.14a-c), the

reduction of LR enables the accumulation of the upper-level warming in the core re-

gion. It is important for a storm-scale outflow to be present to expand the warming

outward over a meso-α-scale area since larger-scale warming is able to induce mean-

ingful, similar sized surface pressure falls. This, however, must be complemented

by a reduction of LR (or an LR already smaller than the system-scale outflow) to

ensure the warming is not dispersed away from the storm center.

2.5 Summary and discussion

The preceding examined the genesis of Hurricane Julia (2010) within an AEW

having an initially vertically-tilted closed circulation. This AEW could be traced

back to 96 h prior to genesis as a well-defined mid-level circulation. The genesis

of Julia occurred shortly after the AEW moved offshore, and was characterized by

significant deepening (within 9 h) in MSLP and the rapid growth of an LLV. The

generation of the LLV can be tied to the concurrent development of deep convection

and its generated vortices, upper-tropospheric warming, a meso-β-scale surface low

and meso-α-scale MSLP falls. These features are protected by the AEW through

ideas similar to the marsupial pouch paradigm and its low-level critical latitude.

Our model results validate the previous hypotheses that the low-level critical

latitude is a preferred location for the initiation and organization of deep convection

(including CBs), and the development of meso-β-scale surface lows and vortices.

It is shown that convective cells and CBs reside along the AEW critical latitude
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during the onset of the simulated SI. They rapidly transport water vapor and cloud

hydrometeors above the 0◦C level, heating the upper troposphere via the latent heat

of freezing and deposition. The localized diabatic heating associated with individual

convective cells appears to account for the formation of numerous meso-β and meso-γ

scale vortices and surface lows. As the convective cells and mesovortices aggregate, a

meso-β-scale surface low and an LLV become the dominant mesoscale features within

the AEW. The LLV forms through vortex stretching as a result of the presence of

deep convection, enhanced PBL convergence associated with the meso-β surface low,

and the conglomeration of mesovortices along the low-level AEW critical latitude.

As deep convection intensifies and aggregates into an MCS along the AEW

critical latitude, a storm-scale outflow develops aloft, resulting in a meso-α-scale

area of high cloud ice content and upper-level warming. The outward expansion

of the warmth during the early stages of SI is made possible by latent heating due

to deposition and freezing being expanded by the storm-scale outflow beyond LR.

Furthermore, LR decreases with time as a result of reduced static stability in the

upper troposphere and increased cyclonic vorticity in the lower troposphere. With

the widespread upper-tropospheric warming, meso-α-scale MSLP falls are hydro-

statically induced, creating a low-level cyclonic disturbance needed for stage one of

TCG development described in the introduction. It is evident that the meso-α-scale

MSLP falls are closely tied to the thermodynamic changes and divergent outflows

in the upper troposphere, which in turn, are inherently tied to the development of

deep convection along the low-level critical latitude of the AEW. Clearly, the meso-

α-scale MSLP falls tend to enhance the PBL convergence for the bottom-up growth
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of TC-scale rotation.

To summarize, the key elements to this sequence of events are: (i) the initi-

ation, intensification and aggregation of deep convection and its generated vortices

along the AEW low-level critical latitude; and (ii) the development of the upper- or

high-level warmth, a storm-scale outflow beyond the Rossby radius of deformation,

and meso-α-scale MSLP falls. Without either of these, the genesis of the simulated

Julia may not occur.
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Chapter 3: Ensemble simulations

3.1 Introduction

In chapter 2, the TCG of Julia was explored through the interactions of the

large-scale “parent” AEW and mesoscale processes within the AEW circulation. In

addition to demonstrating the multi-scale interactions, the importance of upper-

tropospheric warming for the development of a mesoscale MSLP disturbance into

a TD was explored, alluding to the importance of persistent deep convection and

resultant storm-scale outflow.

Even though the previous succinctly demonstrated these features and their

connections during the TCG of Julia, it is worthwhile to investigate if the series of

events are reproducible using a series of ensemble simulations via perturbed ICs.

To further investigate the processes described in chapter 2, 20 66-h cloud-resolving

ensemble simulations of the TCG of Hurricane Julia are created using the finest

1-km horizontal resolution. The following will describe the methodology for the

ensemble generation, the parametric differences between ensemble members, and

dominant disagreements of the ensemble as characterized by ensemble spread and

sensitivity.
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3.2 Ensemble methodology and setup

The WRF-LETKF system (Miyoshi and Kunii 2012) is used herein because

of the successful applications of the LETKF system to other numerical weather

prediction models, including the Japan Meteorological Agency (JMA) operational

model (Miyoshi et al. 2010). While creating the ensemble forecasts from the per-

turbed initial conditions, we strive for consistency with the control simulation and

its parameterizations, as described previously in chapter 2.

Fig. 3.1 shows the step-by-step approach to generating the ensemble forecasts

of Hurricane Julia. The first step is referred to as the “perturbation spin-up”, which

creates randomly perturbed ICs for the WRF-LETKF system. Specifically, ERA-

Interim analyses from 0000 UTC for 20 randomly selected days in the month of

August 2010 are used to initialize this spin-up period in order to keep the dynam-

ical consistency with the large-scale flows characteristic of the 2010 north Atlantic

hurricane season. Each of the 20 random analyses is treated as “the analysis” of

1/0000, which is 96 h before the WRF-LETKF cycle begins. Using these random

ICs, 20 separate WRF forecasts are integrated forward from 1/0000 to 5/0000,

creating randomly perturbed initial conditions for ingestion into the WRF-LETKF

system. This approach follows closely that used by Miyoshi and Kunii (2012), whose

randomly created ICs showed promising results with a similar length spin up.

The second step in Fig. 3.1 is the WRF-LETKF assimilation cycle, which be-

gins at 5/0000 and is run for 120 h until 10/0000, at which time the initialization

of the control simulation is valid. Note that an assimilation cycle is needed here

52



Perturbation Spin-up: 
Run 20 random WRF 

simulations to create purely 
random ICs for the WRF-
LETKF system using 20 

randomly chosen 0000-UTC 
analyses from August 2010. WRF-LETKF Cycle:  

Assimilate observations for 
each member. Use analysis 
perturbations (x’ = xa

m – x) 
instead of full LETKF analysis 

for creating best guess at 
next analysis time. Add 
perturbations onto ERA-

Interim ICs. Ensemble Forecasts:  
Add analysis perturbations to 
ERA-Interim IC data valid at 

10/0000. Integrate each 
ensemble member 

individually to generate 
perturbed forecasts for the 

TCG of Hurricane Julia. 

Start: 01/0000 

Start: 05/0000 

Start: 10/0000 

End: 12/1800 

End: 10/0000 

End: 05/0000 Perturbed	
  ICs	
  

Analysis	
  
Perturba2ons	
  

Figure 3.1: Flow chart of the major steps of the ensemble forecast pro-
cess. The perturbed ICs are created by the “Perturbation Spin-up” step,
which starts and ends at 01/0000 and 05/0000, respectively. The WRF-
LETKF assimilation cycle is then run for 96 h, terminating at 10/0000.
At this time, the 10/0000 analysis perturbations (x′) are created by cal-
culating the differences between the ensemble mean (x) and each mem-
ber’s analysis (xam, where “a” represents analysis and “m” represents
each ensemble member, ranging from 1 to 20). The 66-h ensemble fore-
casts are independently integrated forward to 12/1800, at which time
Julia is declared a TS.
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because the “analyses of 5/0000” from Step 1 are obtained by integrating from 20

randomly selected ICs. In this study, the assimilation cycle uses observational data

from NCEP’s operational global data assimilation system (GDAS); see Appendix

A for more details. The main goal here is to generate realistic perturbations of

the atmospheric state at a time just prior to the TCG of Julia. Using these per-

turbations, ensemble forecasts will yield a spread of solutions of TCG, which are

then investigated to identify the fundamental processes (and related perturbations)

responsible for the evolution of the disturbance into TD Julia.

For Step 2, a single 27-km resolution domain is centered on the region of

interest (“LETKF”; Fig. 3.2) with the WRF-LETKF system creating analyses every

6 h over the 96-h period. The relevant WRF model parameterizations used in

the assimilation cycle include: (i) the WRF Single-Moment Microphysics Scheme

(WSM) 5-class cloud-microphysics scheme (Hong et al. 2004); (ii) the Kain-Fritsch

convective scheme (Kain 2004); (iii) the Rapid Radiative Transfer model (RRTM)

longwave radiation scheme (Mlawer et al. 1997); (iv) the Dudhia shortwave radiation

scheme Dudhia (1989); and (v) the Yonsei University (YSU) PBL scheme (Noh et al.

2003). All 20 members are given the same boundary conditions, which come from

6-hourly ERA-Interim analyses. Even though the members are identical at the

boundaries using this method, substantial differences between the members do exist

in the central region of the domain, as was also found by Miyoshi and Kunii (2012).

A significant difference between the assimilation cycle used herein and by

Miyoshi and Kunii (2012) revolves around how the WRF-LETKF ensemble analyses

are used in the cycle. Miyoshi and Kunii (2012) overwrites the initial conditions from
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Figure 3.2: WRF domain setup for both the WRF-LETKF cycle
(“LETKF”) with the horizontal resolution of 27 km and the subsequent
nested forecast domains of D1, D2, and D3 respectively, with the hor-
izontal resolutions of 9, 3 and 1 km. D3 is a moving domain with the
starting and ending positions marked by the respective boxes. NOAA
OI SST data is shaded at intervals of 1◦C valid at 0000 UTC 10 Sep.
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the WRF pre-processing system (WPS) with the WRF-LETKF system analyses,

leaving the WPS-created boundary conditions intact for each assimilation period.

In contrast, the current study creates initial and lateral boundary conditions from

ERA-Interim analyses using the WPS system, but only uses the analysis perturba-

tions for each ensemble member (e.g., x
′(m)
t = x

a(m)
t - xat , where m is the ensemble

member, a stands for analysis and t represents the analysis time) from the WRF-

LETKF system. These perturbations are added to the WPS-processed ERA-Interim

initial conditions (which are deterministic in nature), creating perturbed initial con-

ditions for the next assimilation period. Given that the main goal of running the

WRF-LETKF cycle is to generate realistic perturbations of the atmospheric state,

it is unnecessary to keep the full analysis of each ensemble member. This rationale

results in the ensemble perturbations being added to the ERA-Interim data for each

6 hourly analysis period. Obviously, the ensemble perturbations at 10/0000 are

of the utmost importance since these perturbations create a spread of perturbed

initial conditions centered on the control simulation, which is initialized from the

10/0000 ERA-Interim data. Our method “re-centers” the ensemble perturbations

about the ERA-Interim analysis every 6 h, and thus, the perturbations are nearly

in balance with ERA-Interim analyses in addition to the ensemble mean. To ensure

proper balance (and centering) of the perturbations, the ensemble mean analysis

was compared to the ERA-Interim analysis at various times, including 10/0000 (not

shown). These comparisons revealed that both analyses were nearly identical with

horizontal resolution being the only notable difference (e.g., 27 km versus 0.7◦ for

the WRF-LETKF and ERA-Interim analyses, respectively).
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The WRF-LETKF-generated (perturbed) ICs are integrated 66 h forward to

12/1800 to produce ensemble forecasts for the TCG of Hurricane Julia, whose output

can be compared with the control simulation discussed in chapter 2. These ensemble

forecasts are made using the same domain and model physics setup as the control,

but with the addition of the 27-km resolution domain. The WRF-LETKF domain

(“LETKF”, Fig. 3.2) supplies the initial and lateral boundary conditions to the

inner domains, having the same 9-, 3- and 1-km horizontal resolutions as the control

simulation (D1, D2, and D3, respectively; Fig. 3.2). The lateral boundary conditions

of the 27-km resolution domain are supplied by the ERA-Interim analysis, like the

assimilation cycle. SSTs are supplied by the NOAA OI high-resolution SST data

set (Reynolds et al. 2007) valid at 10/0000, keeping consistency with the control

simulation. The only difference in the WRF model setup from the WRF-LETKF

assimilation cycle is the use of the Thompson Graupel 2-moment (Thompson et al.

2008) microphysics scheme, the same scheme used in the control simulation.

3.3 WRF-LETKF cycle and ensemble forecast results

Before examining in depth the results from the ensemble forecasts, it is fruitful

to examine some characteristics of the WRF-LETKF cycle in addition to the track

and intensity results from the ensemble as a whole. For the remainder of this paper,

TCG is defined in the same fashion as that described in chapter 2, i.e., the time at

which a closed MSLP isobar of sufficient size and intensity on the standard 4 hPa

contouring interval occurs. This time will be assessed in comparison to the time
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the NHC declared Hurricane Julia a TD, 12/0600. Prior to this time is referred

herein to as TCG while after is referred to as the SI period. Because of the above

definition for TCG, MSLP rather than the relative vorticity field (unlike previous

studies) will be used to examine the intensity of the ensemble-simulated storms. The

term “predictability” is defined in terms of how well the ensemble solutions capture

the TCG event in comparison to the NHC estimates, and by the mechanisms that

yield any ensemble disagreements at the time of TCG. That is, predictability is not

thought of in its common form, which is in terms of how much lead time a particular

forecast alerts that TCG is going to occur.

3.3.1 Results from the WRF-LETKF cycle

Unlike other data assimilation studies which strive to quantify and thoroughly

describe the performance of the data assimilation system, we are more concerned

with the creation of realistic ensemble perturbations. To this end, Fig. 3.3 shows

the domain-averaged analysis spread at σ = 0.59712 (approximately 600 hPa) for

u, v, T, and qv from 05/0600 to 10/0000. This level is used to examine ensemble

spread because near it the AEW cyclonic vorticity and related circulation field are

maximized prior to TCG (see chapter 2). The ensemble spread of all variables de-

creases rapidly during the first 12 h of integration and then remains nearly constant,

with further decreases during the last 6-h assimilation period, alluding to the cre-

ation of reasonable flow-dependent ensemble perturbations. The ensemble spread of

approximately 0.4 m s−1 for u (Fig. 3.3a) is consistent with experiments using both
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Figure 3.3: Time series of ensemble spreads during the period of 0600
UTC 5 to 0000 UTC 10 Sep for (a) the zonal wind (u, m s−1) and
meridional wind (v, m s−1); (b) temperature (T, ◦C) and water vapor
mixing ratio (qV, g kg−1) at σ = 0.59712, approximately 600 hPa, that
are averaged over the entire WRF-LETKF domain shown in Fig. 3.2.

adaptive and globally constant multiplicative inflation in Miyoshi and Kunii (2012).

3.3.2 Ensemble forecast track and intensity

The tracks from the 20-member ensemble forecasts are shown in Fig. 3.4, as

compared to the control simulation (black, squares) and best fixes from the NHC

(black, circles). The same tracking methodology as that in chapter 2 is used, with

the track initially being generated using 600- and 700-hPa circulation centers in
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conjunction with large absolute vorticity. The tracking is then shifted to the PMIN

center of sufficient spatial size once it forms. This transition varies between ensemble

members and could lend to some of the track spread seen in Fig. 3.4.

Overall, the track of the AEW prior to coastal transition is well agreed upon

by nearly all members, with the majority of the track differences occurring near the

end of the 66-h simulation. Interestingly, the outlying southern-most solution after

coastal transition is the control simulation, with an overall track error of 173 km as

compared to the best fixes. The ensemble mean track improves upon the control

simulation by over 40 km, with a mean track error of 131 km, while the member with

the best track has an average track error of just 106 km. Substantial variability in

the track exists after 12/0600, which is in agreement with the strength differences of

the forecast storms among the ensemble members to be shown in the next. Fig. 3.5

shows the time series of the storm intensities in terms of PMIN and VMAX from

the 20 ensemble members, control simulation (black, squares) and NHC estimated

intensity (black, circles). Additionally, the ensemble spreads for PMIN and VMAX are

also plotted in terms of sample standard deviation (dashed lines). Obviously, the

ensemble spread of each parameter increases as the integration progresses, reaching

maximums of approximately 2.5 hPa and 4 m s−1, respectively, at 12/1800. Eighteen

out of the 20 members produce PMIN below 1007 hPa from the NHC estimated PMIN

at 12/0600, while the remaining 2 members simulate a storm with PMIN of 1007 hPa,

agreeing with the NHC estimated intensity. This large bias for a stronger storm at

12/0600 (with an ensemble mean PMIN of 1004 hPa), hints at the possibility that the

NHC estimated intensity is too weak by 2 – 3 hPa, but such a difference is probably
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Figure 3.4: Tracks of each WRF-LETKF ensemble member (colored by
member) as compared to the control simulation (black, squares) and best
NHC estimated (black, circles) tracks valid from 0600 UTC 10 to 1800
UTC 12 Sep.

within the range of accepted error. About 16 out of the 20 members are stronger

than 1005 hPa at 12/1800, with the strongest member reaching a PMIN of 999 hPa.

In contrast, 2 out of the 20 members are weaker than 1005 hPa at 12/1800, while

the final two members have the same NHC estimate of 1005 hPa. Thus, we may

state that the TCG of Hurricane Julia is highly predictable in terms of PMIN, with

nearly all members depicting a TD-like intensity at 12/0600 and a TS-like intensity

at 12/1800. It is worth noting that the true “predictability” of the TCG event could

be found by running simulations using the perturbed ICs created without any data

assimilation. By doing so, the theoretical upper and lower bounds of PMIN could

be identified, painting a clearer picture for how predictable the ensemble with data

assimilation is.

61



Figure 3.5: Time series of the intensity of Hurricane Julia in terms of
(a) PMIN (hPa) and (b) VMAX (m s−1) from each WRF-LETKF member,
the control simulation (black, squares) and the NHC estimated (black,
circles). Dashed lines in (a) and (b) represent the ensemble spread (i.e.,
sample standard deviation) of PMIN and VMAX, respectively, while the
colored lines have the same meaning as in Fig. 3.4. The vertical dashed
lines in (a) and (b) represent the time of TCG as determined by NHC.
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3.3.3 Selection of developers and non-developers

Given the spread among the 20 members, it is desirable to examine which

member reproduces the TCG of Julia too strongly or weakly, as well as which mem-

bers have the best and worst track. Here, the best (and worst) track is selected using

the overall average track error when comparing to the NHC estimated track. Simi-

larly, the best (and worst) members for intensity are based purely on the members’

PMIN, as compared to the NHC estimated PMIN, in addition to the storm intensity

when declared a TD and a TS. We decide to use PMIN rather than VMAX to identify

these members since its time series best defines the schism between developers and

non-developers (see Fig. 3.5a). More attention will be given to the intensity of in-

dividual members rather than the track because TCG marks a distinction between

intensity changes, not track changes.

Fig. 3.6 shows the tracks and intensities for the member with the best track

(member 4, orange), the best intensity (member 7, green), as well as the member

with the strongest storm (member 10, red) and weakest storm (member 14, blue).

Member 7 compares favorably to the NHC (black circles), with an average absolute

intensity error in PMIN of 0.95 hPa. Further supporting its selection as the member

who best replicates NHC estimates, member 7 has the same PMIN as the NHC

estimate at TD and TS times in conjunction with a total track error of 140 km.

In contrast to the “best” members, the member with the worst track error is

also the member with the strongest overall storm (member 10, red line in Fig. 3.6).

The overall track error of 246 km is significantly above the ensemble mean and
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Figure 3.6: (a) The tracks from the member with the best track (member
4, orange), best intensity (member 7, green), the weakest storm (member
14, blue), and the strongest storm (member 10, red) in comparison to
the WRF control simulated (black, squares), and NHC estimated (black,
circles) superimposed with ERA-Interim 600-hPa co-moving streamlines
valid at 0600 UTC 10 Sep. (b) Time series of the PMIN (hPa) of each of
the members in relation to the WRF control simulated and NHC best
estimates. Colored lines in (b) have the same meaning as in (a). The
dashed line in (b) represents the time of TCG as estimated by NHC.
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control track errors, with most of this track error occurring later in the integration.

Of interest is the time series of PMIN given in Fig. 3.6b, showing that member 10

(red) deepens 4.5 hPa between 11/1200 and 11/1800, reaching a PMIN of 999 hPa at

12/1800. Contrasting member 10 is member 14, a non-developer (blue line), which

never develops into a TD and ends the 66-h integration with a PMIN of 1007 hPa

at 12/1800. Both members 10 and 14 are used in conjunction with member 7 and

the control simulation to assess the dynamic and thermodynamic differences taking

place during TCG.

The members of interest (7, 10, and 14) show differences with respect to spa-

tial cloud patterns when compared to the observed METEOSAT-9 IR imagery (cf.

Figs. 2.4 and 3.7). After 12 h into the integration (Figs. 3.7a,e,i,m), little differ-

ences exist between the members with minimal convective initiation. By 11/1200

(Figs. 3.7b,f,j,n), differences between the members start to emerge, but all fail to

capture the large, round-shaped MCS found in the observed IR (Fig. 2.4b). At the

time of TCG (Figs. 3.7c,g,k,o), only member 10 (the strongest developer) and the

control simulation compare favorably with the observed METEOSAT-9 IR image

(Fig. 2.4c). This supports our initial postulation that the NHC PMIN estimate at

12/0600 might be too weak since (i) the strongest member compares favorably to

the observed cloud spatial patterns; and (ii) the member with comparable PMIN to

the NHC estimate (member 7) depicts weak, sporadic convection at the same time.

By 12/1800, the two weaker members (Figs. 3.7d,l) depict a more coherent MCS,

but do not exhibit the cyclonic circulation in the cloud fields seen in member 10

(Fig. 3.7h), the control simulation (Fig. 3.7p) and the observed (Fig. 2.4d). Overall,
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Figure 3.7: Comparison of WRF-derived brightness temperature (K)
from members 7 (a-d, best intensity), 10 (e-h, strongest developer), 14
(i-l, non-developer) and the control simulation (m-p) at the same times
as in Fig. 2.4. Data from the 9-km resolution simulation were used.

member 10 and the control simulation have the most realistic representation of the

cloud field associated with the AEW and subsequent TS.

3.4 Parametric differences between ensemble members

In order to isolate what causes the intensity differences shown in the preced-

ing section, we examine the differences between the developers and non-developers
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from a synoptic and mesoscale viewpoint. Of particular interest is the initiation of

deep convection and its persistence during TCG, which have previously been stud-

ied by Sippel and Zhang (2008) and Hopsch et al. (2010) in terms of CAPE and

tropospheric moisture content. In addition, we investigate the differences in upper-

tropospheric processes, including upper-level warming and changes to the outflow

layer, as previously emphasized by Zhang and Zhu (2012) and the work presented

in chapter 2.

3.4.1 Differences in the upper-level warming

Following Chen and Zhang (2013) and Zhang and Zhu (2012), Fig. 3.8 presents

the time series of the area-averaged cloud ice content and relative warming with re-

spect to the vertical temperature profile at 11/0600, at which time, all members have

a distinct midlevel circulation associated with AEWs over land. The relationship

between the warming aloft and MSLP pressure changes are shown in Fig. 3.9, with

the 200-hPa temperatures greater than -53◦C shaded, and the MSLP field overlaid.

It is obvious that the two stronger storms have a burst of warming exceeding

1.5◦C just before and at the onset of TCG (Figs. 3.8b,d). Prior to this burst, warm-

ing in excess of 0.5◦C exists in the 500-150 hPa layer, beginning just after 11/1200.

This warming layer deepens and intensifies in both member 10 and the control ap-

proaching their respective TCG times, with member 10 exhibiting warming in excess

of 1.5◦C at 11/1800 (Fig. 3.8b). The 11/1800 time also marks the first time when
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Figure 3.8: Time-height cross section of the temperature differences from
the 30-h simulated values (valid at 0600 UTC 11 Sep, shaded, ◦C) and
cloud ice mixing ratio (contoured at 2, 5, 10, 20, and 40 ×10−4 g kg−1)
averaged over an area of 100 km × 100 km surrounding the storm center
from hourly 3-km resolution domains associated with members 7 (a,
best), 10 (b, strongest developer) and 14 (c, non-developer) and the
control simulation (d). Vertical dashed lines represent the time of TCG
in ensemble member 10 and the control; member 7 undergoes TCG at
1800 UTC 12 Sep.
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a distinguishable PMIN is found in member 10, directly beneath a meso-β-scale area

of temperatures exceeding -52.5◦C at 200 hPa (Fig. 3.9b). In contrast, the control

simulation shows a broad area of lower MSLPs over the ocean with no appreciable

concentration of warmth at 200 hPa (Fig. 3.9d). Member 10 undergoes TCG first,

warming over 0.5◦C with an accumulation of high cloud ice content between 11/1800

and 12/0000 (Fig. 3.8b). During this period, an expansion of the warmth at 200 hPa

over the meso-α scale occurs due to the development of a storm-scale outflow. This

meso-α area of warmer temperatures hydrostatically induces similar sized MSLP

falls, while directly beneath the warmest 200-hPa temperatures the meso-β PMIN

seen in Fig. 3.9b intensifies into the TD in Fig. 3.9f.

The control simulated storm undergoes TCG between 12/0000 and 12/0600,

with an increase in the upper-level warming from 0.75◦C to in excess of 1.5◦C,

combined with an accumulation of large cloud ice content (Fig. 3.8d). In a fashion

similar to member 10, the control also shows the development of a meso-β-scale PMIN

beneath 200-hPa temperatures between -53 and -52.5◦C (Fig. 3.9h). This warming

expands markedly in a region characterized by storm-scale outflow, inducing MSLP

falls on a meso-α-scale area in addition to generating the meso-β surface low (TD

Julia) at 12/0600 (Fig. 3.9l).

After their respective TCG, both member 10 and the control simulation de-

pict a weakening of warming within 100 km of the storm center, followed by a

re-strengthening toward the end of the simulations (Figs. 3.8b,d). This weakening

is more apparent in the control, with the 200-hPa temperatures in excess of -52.5◦C

contracting between 12/0600 and 12/1800 (Figs. 3.9l,p,t). An increase in VWS to
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Figure 3.9: Comparison of the 200-hPa temperature (shaded, ◦C), MSLP
(contoured at intervals of 1 hPa), and co-moving wind vectors (reference
vector is 10 m s−1) from ensemble members 7 (first row), 10 (second
row), 14 (third row) and the control simulation (fourth row) that are
valid at 1800 UTC 11, 0000 UTC, 0600 UTC, 1200 UTC, and 1800 UTC
12 Sep, respectively. The -52.5◦C isotherm at 200 hPa is contoured bold
red to show areal changes of the warming with time. The gray boxes
in (e) and (i) represent the area used for the averages in Figs. 3.10 and
3.12. Data from the 9-km resolution simulation are used.
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between 8 and 12 m s−1 in the 400-150-hPa layer (Fig. 3.11c) in the control can

partially explain the weakening of the warming. Meso-α MSLP falls at the surface

continue between 12/1200 and 12/1800 in member 10, with the warmest regions

at 200 hPa characterized by a meso-β-scale surface low present directly beneath

(Figs. 3.9n,r). At 12/1800, temperature differences again intensify to greater than

1.5◦C (Fig. 3.8b), with a 999-hPa TS-like meso-α surface low directly beneath the

warm region at 200 hPa (Fig. 3.9r).

On the other hand, the two weakest members struggle to develop such sig-

nificant upper-level warming (Figs. 3.8a,c). For example, the majority of the time

series of member 7, which is the best as compared to NHC estimates, is dominated

by sporadic meso-β-scale warming less than 1.0◦C with cloud ice content less than

half that of the strongest developer. It is not until just prior to 12/1200 that persis-

tent warming develops in a layer between 600 and 150 hPa, with a notable increase

in cloud ice content over the same depth. This warming intensifies by the end of the

simulation, finally reaching 1.25◦C between 12/1200 and 12/1800, undergoing TCG.

Such sporadic warming prior to 12/1200 supports the lack of a persistent PMIN cen-

ter (Figs. 3.9a,e,i), since the warming is unable to hydrostatically induce mesoscale

MSLP falls. This inability can be attributed to the lack of a storm-scale outflow

in contrast to the stronger developers, among other attributes shown in following

sections (cf. Figs. 3.9e and 3.9f).

Member 14 is unique in that persistent warming in excess of 0.5◦C in asso-

ciation with moderate cloud ice content between 500 and 200 hPa exists for just

over a 24-h period, but a TD never develops (Fig. 3.8c). The core of this warming
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exceeds 0.75◦C from approximately 11/1800 to 12/0600 (Fig. 3.8c) with an iden-

tifiable meso-β-scale PMIN evident beneath the warmest temperatures at 200 hPa

(Figs. 3.9c,g,k). The warmest temperatures are localized however, inhibiting the

growth of a TD-scale PMIN. The presence of a weak storm-scale outflow suppresses

the expansion of the warmth resulting in minimal meso-α-scale MSLP falls. After

12/0600, the warming near the storm center weakens below 0.75◦C (Fig. 3.8c) with

a similar response seen in the 200-hPa temperature field (Figs. 3.9o,s).

Since we have identified meaningful differences in MSLP and upper-tropospheric

temperatures from the 4 selected simulations, it is worthwhile to see if the differ-

ences also exist in the ensemble as a whole. To this end, Fig. 3.10 compares the

area-averaged 400-150 hPa layer-averaged temperatures and MSLP among all the

ensemble members; the former parameter is chosen based on the general depth of

the warming layer of the 4 storms in Fig. 3.8. It is evident that the majority of

members at 12/0000 have area-averaged MSLP between 1010 and 1009 hPa with

corresponding upper-tropospheric temperatures at or below -37◦C (Fig. 3.10a). A

clear negative relationship, with correlation coefficient of -0.768, exists between the

parameters, alluding to members with warmer upper-tropospheric temperatures also

having lower area-averaged MSLP. This correlation, however, has been influenced

by the outlying members, although the general negative trend still exists within the

ensemble cluster. As more ensemble members strengthen, the negative correlation

becomes more robust, with a Pearson’s correlation of -0.937 (Fig. 3.10b). Such a

strong negative correlation implies that the fast developers (e.g., those undergoing

TCG) have prominent upper-tropospheric warming. This is supported by the in-
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Figure 3.10: Scatter plots of the 500 km × 500 km area-averaged 400-
150 hPa layer-averaged temperature (◦C; x-axis) versus MSLP (hPa;
y-axis) from each ensemble member at (a) 0000 and (b) 0600 UTC 12
Sep, respectively (see Figs. 3.9e,i for the areas used for averaging). The
Pearson’s correlation coefficient (r) and the coefficient of determination
(r2) are calculated at each time. The vertical and horizontal dashed lines
in (b) represent the schism between fast- and slow-developing ensemble
members. Data from the 3-km resolution simulation are used in the
averaging.
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creased spread in both area-averaged upper-tropospheric temperatures and MSLP,

as a large cluster of members has area-averaged MSLP below 1007 hPa and 400-150

hPa layer-averaged temperatures of above -37◦C. A clear schism between the devel-

opers and non-developers at 12/0600 can easily be identified, as indicated by the

vertical and horizontal dashed lines in Fig. 3.10b. Thus, the impact of upper-level

warming on MSLP changes can be seen from the entire ensemble, with notable dif-

ferences between faster and slower (or non-) developing members. This is especially

evident at 12/0600, as a cluster of members undergo or are in the process of TCG.

Obviously, this strong linear relationship is just hydrostatic balance, though such a

relationship between the upper and lower troposphere has not been depicted before

during TCG.

The difference in upper-tropospheric warming between the members is also

consistent with observations taken during PREDICT, although the warming may

sometimes occur in the midtroposphere (Zhang and Zhu 2012). Komaromi (2012) in-

vestigated composite dropsondes during PREDICT for developing and non-developing

storms in comparison to the mean temperature profile from the campaign. The work

shows that 1.0 to 2.0◦C warm anomalies in developing storms occur 0-24 h prior to

TCG within 200 km of the storm center. The work also states that negative anoma-

lies of 0.5 to 1.0◦C occur for non-developing storms when compared to the mean

profile, which are also consistent with those shown in Fig. 3.8.
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3.4.2 Differences in the outflow layer

Given the obvious differences in the upper-tropospheric warming, it is worth-

while to examine the characteristics of how the warm air is able to accumulate in

developer versus the non-developers. Chapter 2 demonstrated that the accumula-

tion of the upper-level warmth results from a storm-scale outflow developing beyond

LR, within which, the velocity field tends to adjust to the mass field, with significant

reduction in energy dispersion by gravity waves. Further, high VWS in the warming

layer inhibits the formation of the upper-level warming (Zhang and Zhu 2012), as

the warming is “sheared apart”.

To investigate the key differences in the outflow layer, Fig. 3.11 shows the 100

km × 100 km area-averaged LR, 400-150 hPa layer-averaged divergence, and 400-

150 hPa layer-averaged VWS for the same time period as Fig. 3.8. The upper-level

warming seen for member 10 (Figs. 3.8 and 3.9) becomes a system-scale feature due

to a significant reduction in LR below 800 km, a potent divergent outflow extending

beyond LR, and low VWS in the warming layer (red lines, Figs. 3.11a-c). As the

upper-tropospheric warming takes place, local static stability is reduced, causing

LR to shrink. As will be shown later, the large divergent outflow in member 10

results from the maintenance of deep convection near the AEW pouch center and

its up-scale aggregation into an MCS. Unlike member 10, the non-developer (member

14) shows minimal reduction in LR, weak divergent outflow, and a steady increase

in 400-150 hPa layer VWS to above 18 m s−1 (blue lines, Figs. 3.11a-c). Given

the combination of these characteristics, it is not surprising that significant warmth
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Figure 3.11: Time series (0600 UTC 11 to 1800 UTC 12 Sep) of the
100 km × 100 km area-averaged (a) Rossby radius of deformation (LR

= NH/η, where η is the 1000-400 hPa layer-averaged absolute vorticity,

N =
√

g
θ̄
dθ
dz

is calculated using the area-averaged 1000 hPa potential tem-

perature (θ̄), the vertical differential potential temperatures and heights
between 150 and 1000 hPa (dθ

dz
), and g is the gravitational constant. H is

calculated usingH = RT̄/g, where T̄ is the average temperature between
1000 and 150 hPa, and R is the gas constant for dry air); (b) 400-150
hPa layer-averaged divergence (s−1); and (c) 400-150 hPa layer-averaged
VWS (m s−1) from the selected 4 members using 3-km resolution domain
data.
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could not accumulate on the storm scale. It is very likely that the weak warming seen

for member 14 in Fig. 3.8c diminished as a result of the large increase in the outflow

layer VWS, in a fashion similar to the control. Thus, the system-scale warming is

reliant on the outflow layer being cooperative with weak VWS. Otherwise, even if a

storm-scale outflow beyond LR is present, the warming will be “torn apart” by the

VWS. An interesting topic for future work of ours will be why the VWS differences

exist, as the results herein do not elucidate such differences.

Further elaborating on the upper-tropospheric warming in the outflow layer,

Fig. 3.12 compares the area-averaged 400-150 hPa layer-averaged relative diver-

gence and temperature between each ensemble member at 12/0000 and 12/0600. A

clear positive correlation (with a correlation coefficient of 0.733) exists at 12/0000,

with members having greater divergence in the 400-150 hPa layer and warmer area-

averaged upper-tropospheric temperatures. A very similar pattern, though an op-

posite correlation, can be seen when comparing Fig. 3.12a with Fig. 3.10a, alluding

to the interconnectedness of the parameters investigated. Most ensemble mem-

bers have area-averaged divergence below 1.6×10−5 s−1 in conjunction with upper-

tropospheric temperatures below -37◦C. By 12/0600, a more definitive ensemble

spread occurs as fast developers depict a more pronounced divergent outflow in ad-

dition to the warmer upper-tropospheric temperatures (Fig. 3.12b). The difference

between slower and faster developing members can also be easily identified by the

vertical and horizontal dashed lines in Fig. 3.12b, marking the intersection of -37◦C

upper-tropospheric temperatures and 2.3×10−5 s−1 divergence. Obviously this re-

lationship is simply hydrostatic balance, though these relationships have not been
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alluded to in previous studies regarding the development of the TD-scale MSLP

disturbance. These results support our initial findings that a prominent divergent

outflow aids in the expansion of the upper-tropospheric warming over a meso-α-scale

area as LR shrinks due to reduced static stability in the upper troposphere.

3.4.3 Differences in convective initiation

The development of persistent deep convection can help precondition the tro-

pospheric column with sufficient moisture, an important factor for the occurrence

of TCG within an AEW (Hopsch et al. 2010). TCG has also been shown to have

ties to deep convection and its area coverage by Sippel and Zhang (2008) through

high tropospheric moisture content and CAPE. In addition, upper-level warming

development (Figs. 3.8 and 3.9) relies on persistent deep convection and a storm-

scale outflow within the AEW (chapter 2, Zhang and Zhu 2012). The latent heating

in the upper troposphere due to deposition and freezing has been shown to be re-

lated to the intensification and aggregation of deep convection (or convective bursts,

CBs through associated low-level vortical circulations) into an MCS along the low-

level AEW critical latitude (see chapter 2). As the MCS becomes organized, the

storm-scale outflow expands beyond the shrinking LR, enabling the accumulation

of meso-α-scale warming in the upper troposphere. Fig. 3.13 shows the time series

of surface-based convective inhibition (CIN), simulated composite radar reflectiv-

ity, 550-500 hPa layer-averaged relative humidity, and surface-based CAPE that are

area-averaged around each members’ respective storm center. In addition, Fig. 3.14
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Figure 3.12: As in Fig. 3.10, except for 400-150 hPa layer-averaged rel-
ative divergence (×10−5 s−1; x-axis) and 400-150 hPa layer-averaged
temperature (◦C; y-axis). The vertical and horizontal dashed lines in
(b) represent the schism between fast- and slow-developing ensemble
members.
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shows the spatial distribution of composite radar reflectivity and surface-based CIN.

Further, Figs. 3.14q-t show the 200-hPa -52.5◦C isotherm valid at 11/1800, the time

at which member 10 first develops a meso-β-scale PMIN.

The surface-based CIN (Fig. 3.13a) shows one distinct period of member dif-

ferences between 10/1800 and 11/1200, as encompassed by the dashed lines. Before

10/1800, CIN values are agreed upon in all members, averaging around 10 J kg−1

(Fig. 3.13a) with no convection in the core region (Fig. 3.13b). CIN quickly in-

creases in members 7 and 14 after 10/1800 (green and blue lines in Fig. 3.13a)

reaching 55 and 45 J kg−1, respectively, at 11/0600. In contrast, member 10 has

a much slower increase in CIN values, reaching 25 J kg−1 at 11/0600, nearly half

that of the other members. The development of CIN in all members takes place

to the north and west of each member’s AEW pouch center between 10/1800 and

11/0600 (Figs. 3.14a-l), reaching a maximum just before sunrise when the nocturnal

inversion is the strongest (11/0600). Such a finding alludes to the possibility that

radiational cooling is contributing to the enhanced CIN values. The CIN suppresses

convective development between 11/0000 and 11/0900 in all ensemble members and

the control, with average composite radar reflectivity returns below 15 dBz near the

storm centers (Figs. 3.13b and 3.14).

After 11/0600, all members show a large reduction of CIN (Fig. 3.13a), with

member 10 beginning to initiate more convection near the storm center (Fig. 3.14n).

In general, the suppression of deep convection due to CIN during the 18-h period

of 10/1800 and 11/1200 has a lasting impact on the spatial coverage of convection

near the storm centers of all the members. At local noon (i.e., 11/1200), vertical
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Figure 3.13: Time series of (a) surface-based convective inhibition (CIN,
J kg−1), (b) simulated composite radar reflectivity (dBz), (c) 550-500
hPa layer-averaged relative humidity (%), and (d) surface-based convec-
tive available potential energy (CAPE, J kg−1) that are averaged over an
area of 200 km × 200 km around the storm center from ensemble mem-
bers 7 (green, best), 10 (red, strongest), and 14 (blue, weakest) and the
control simulation (black) valid from 0600 UTC 10 to 1800 UTC 12 Sep
from the 9-km resolution domain. The vertical dashed lines encompass
the period where convective development is limited in all members.

mixing of the PBL tends to remove any possible nocturnal inversion. However, the

larger the CIN (e.g., inversion), the longer it takes to erode, and thus the mem-

bers with greater CIN (members 7 and 14) show the suppression of new convective

development (Figs. 3.14m,o,q,s). Member 10 with its weaker CIN near the AEW

pouch center reinvigorates the MCS off the coastline between 11/1200 and 11/1800

(Figs. 3.14n,r), in a fashion similar to the control (Figs. 3.14p,t). Delayed convec-

tive initiation persists in the non-developer (member 14), with average composite

reflectivity returns well below member 10 from 11/1800 to the end of the simulation

(Fig. 3.13b). The development of the meso-β-scale PMIN in member 10 is found

where the strongest reflectivity returns over water occur, in a region characterized

by temperatures greater than -52.5◦C at 200 hPa (circled area in Fig. 3.14r). Such a

finding is consistent with the results discussed previously with respect to the outflow

layer (see red lines, Figs. 3.11a-c).

The mid-tropospheric moisture content also exhibits differences between the

members, as shown by the layer-averaged 550-500 hPa relative humidity (hereafter

RH; Fig. 3.13c). As convection develops between 10/1800 and 11/000 (Figs. 3.13b
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Figure 3.14: Comparison of the composite radar reflectivity (shaded,
dBz) and surface-based CIN (contoured at 10, 20, 40, 60, 80, and 100 J
kg−1) from ensemble members 7 (first row), 10 (second row), 14 (third
row) and the control simulation (fourth row) valid at 1800 UTC 10, 0000
UTC, 0600 UTC, 1200 UTC, and 1800 UTC 11 Sep, respectively. The
600-hPa AEW trough axis and critical latitude are shown with the thick
solid and dashed lines, respectively. The -52.5◦C isotherm at 200 hPa
is contoured bold red at 1800 UTC 11 Sept in (q-t) to demonstrate the
relationship between the warming and deep convection. The circle in (r)
encompasses the location of the first closed MSLP contour from member
10. Data from the 9-km resolution domains are used.
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and 3.14), all members show an increase in layer-averaged RH values with member

10 having the largest increase of nearly 10%. A slow (but variable) increase in the

layer-averaged RH occurs between 11/0000 and 11/1200 as new convection struggles

to develop (Figs. 3.13a,c). The differences in RH between the members become

most notable between 11/1200 and 12/0000, as convective development increases

and CIN is reduced. Member 10 shows a consistent increase in midlevel RH to

above 90% by 12/0000, while members 7 and 14 show a delayed response in the

midlevel moistening directly after 11/1200. This delay in development until roughly

11/1800 can be attributed to having to overcome larger CIN in the previous 12-h

period (Figs. 3.13 and 3.14). After 12/0000, every member except for member 14

has sufficient midlevel moisture with RH values nearing 90% (Fig. 3.13c). Such a

difference is readily explained by the lack of convective development near the storm

center in member 14, as seen in Figs. 3.14b and 3.13.

Surprisingly, surface-based CAPE exhibits little differences between the de-

velopers and non-developers. This result does not agree with that of Komaromi

(2012) who found that non-developing storms had substantially larger CAPE than

developing storms when calculated from composite soundings during the PREDICT

campaign. Our findings also somewhat disagree with Sippel and Zhang (2008), who

noted CAPE as an important initial condition for the early 6-h to 12-h period of

integration in developers, in contrast to the findings of Komaromi (2012). We state

that the results disagree “somewhat” with Sippel and Zhang (2008) since they do

explicitly mention that (i) their results are specific to the storm investigated; (ii)

their results do not imply that CAPE is directly correlated to occurrence of TCG;
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and (iii) they believe it is possible for CAPE to speed up TCG, given a favorable

large-scale environment. Even so, CAPE is only a measure of energy available to the

parcel and may be useful after overcoming CIN. Thus, we believe that CAPE dif-

ferences are secondary to the ability to generate and sustain deep convection, which

relies on reduced CIN and development along the low-level AEW critical latitude

near the AEW pouch center (Dunkerton et al. 2009). Overall though, the general

idea from Sippel and Zhang (2008) that convective development and coverage are

important for TCG is agreed upon with our findings. This overarching characteristic

of developing disturbances is also supported by Hopsch et al. (2010).

Our results indicate that the predisposition of larger CIN in members 7 and 14

suppresses convective development and thus the vertical moisture transport needed

to precondition the atmosphere prior TCG. This result is consistent with Hopsch

et al. (2010), who notes that non-developing AEWs are more likely to have drier air

in the middle- and upper-levels. The results allude to the need for fast-developing

waves (Hopsch et al. 2010) to also have lower CIN in close proximity to their pouch

center, so that convection can develop and persistently moisten the midtroposphere.

These CIN values could possibly tie to the time of day for the coastline passage,

which if at night, would enhance the CIN due to the development of a nocturnal

inversion. The diurnal nature of convection has been shown to be linked to TCG

by Ventrice et al. (2012a) and thus, similar variations in CIN could be the limiting

factor of convective development. Overall, the strongest developer (member 10) had

less CIN to overcome early in the simulation, allowing for faster development of a

persistent MCS. This in turn preconditions the middle and upper troposphere with
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moisture and also allows for the faster development and expansion of the storm-scale

outflow and thus, upper-tropospheric warming.

3.4.4 Summary and discussion

The preceding investigated the TCG of Hurricane Julia (2010) using a suite

of WRF-LETKF ensemble simulations and the differences between them. It is

evident from the 20 ensemble simulations that the TCG of simulated Julia is highly

predictable with 18 out of 20 members having PMIN deeper than the NHC estimated

1007 hPa at 12/0600. This result indicates that the NHC estimated storm could

have been stronger by 2-3 hPa at this time, though this difference is within the range

of acceptable error for intensity estimates of early-stage storms. We focused on two

important factors for TCG: convective initiation and upper-level warming. Both of

these are strongly tied together since persistent deep convection and its maturation

along the low-level AEW critical latitude during TCG allows for (i) the development

of the storm-scale outflow; (ii) a reduction of LR; and (iii) the depositional heating

of the upper troposphere.

It is shown that the strongest member has the most prominent upper-level

warming over a larger spatial area prior to and at TCG, which induces similar-sized

meso-α MSLP falls and the development of a meso-β surface low into a TD. In

particular, the meso-β-scale surface low is consistently located with the warmest

temperatures in the upper troposphere, demonstrating that TCG is resultant of

locally-induced surface pressure falls from the warming aloft. The opposite is true
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for the weakest member. The warming of the upper troposphere has been proposed

to occur by the depositional growth of ice particles and freezing, in addition to

compensating subsidence once a mature MCS is present. This notion is supported

by the findings that the strongest member has cloud ice content nearly double that

of weaker members.

Initiation of deep convection is found to be tied to the magnitude CIN earlier

in the simulations. The member with weaker CIN early in the simulation shows the

faster development of convection after coastal passage, and has the faster-developing

TD. This is consistent with previous work such that fast developing waves have

higher midtropospheric moisture content and stronger convection during coastal

passage. Supplementing this idea, the faster development and aggregation of deep

convection over the ocean allows for the upper-level warming to intensify and expand

faster with time, inducing MSLP falls earlier in comparison to the other members.

Thus, we believe that fast-developing AEWs might also have an appreciable differ-

ence in the magnitude of CIN during coastal passage. No appreciable differences are

found to take place between developing and non-developing members with respect

to surface-based CAPE. This result, however, is believed to be secondary to the im-

portance of weak CIN values prior to TCG, since parcels cannot use CAPE before

CIN is overcome. While this somewhat contradicts the results of previous work, the

notion of persistent deep convection and higher tropospheric moisture content for

developing disturbances agrees with the results found previously. This lends us to

believe that convective initiation is an important factor for TCG, and it remains to

be seen whether CIN, CAPE or both have a lasting impact on the presence of deep
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convection prior to and during TCG.

In conclusion, we may state that the fundamental ensemble member differences

for the TCG of Julia involve convective initiation near the core region and the

development of storm-scale upper-tropospheric warming. Given that the synoptic

scale environment was favorable for TCG, the slight differences in the initiation and

persistence of storm-scale deep convection could be responsible for the occurrence

of TCG. This might or might not be true for other TCG cases, however, as each

case includes a multitude of factors that must come together for TCG to occur.

3.5 Ensemble sensitivity analyses

3.5.1 Methodology

While the previous subsections provided meaningful results from utilizing only

4 simulations, the following focuses on expanding the investigation beyond a handful

of ensemble members. To this end, our approach herein investigates the uncertainty

associated with the TCG of Julia by utilizing the whole complement of ensemble

members (i.e., 20 members). Using the full complement of ensemble members,

sensitivity analyses are conducted.

The ensemble sensitivity analyses performed herein employ EOFs and related

PCs as forecast metrics, following those used by Chang et al. (2013) and Zheng et al.

(2013). Typically, EOFs are created in temporal and spatial dimensions, with the

PCs representing the time series of the EOF pattern. Alternatively, we calculate

EOFs using the ensemble dimension in lieu of the time dimension. Essentially,
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anywhere the time dimension is used is replaced with the ensemble dimension in the

EOF calculation, ranging from 1 . . .M , where M = 20 (i.e., the number of ensemble

members). Thus, the 20 values of a PC (hereafter referred to as “PC values”)

represent how strongly a particular ensemble member projects on to the particular

phase of the related spatial EOF pattern. We generate EOFs at two important

stages in the evolution of Julia: (i) pre-TD: 11/1800, and 12/0000; and (ii) TD:

12/0600. These times are chosen based on the emergence of MSLP disturbances

in some faster developing members in addition to being times when the ensemble

spread nears or exceeds 1 hPa (Fig. 3.5a). These times correspond to 42, 48, and

54 h integration times from the ensemble forecasts. We create the EOFs over a 10◦

longitude × 6◦ latitude domain encapsulating the storm centers of each ensemble

member at each respective time using simulation data from the 27-km resolution

domain. The 27-km resolution domain is used to ensure that a coherent ensemble

difference signal can be identified by the EOFs. Higher resolution domains (e.g., 3

km) would have too much variance in the system such that intensity and position

disagreements between the ensemble members would not be identified by the EOFs,

or the EOFs would explain substantially less variance. The sensitivity analyses will

focus on the PCs from one of the two leading EOF patterns, as these explain the

largest portion of the total variance of the respective parameter, while the third and

beyond EOFs explain substantially less total variance (typically less than 10% for

the respective parameter).

While assessing these EOF patterns, care needs to be taken in understanding

their physical significance. The EOF spatial pattern carries the same unit as the
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forecast variable (e.g., hPa for MSLP) with the amplitude representing the amount

of the ensemble sample standard deviation explained by the EOF. The sign of the

pattern does not matter, but the spatial characteristics of the pattern do have phys-

ical significance. That is, the spatial patterns of the EOFs can represent intensity

and position differences of a cyclone (Chang et al. 2013; Gombos et al. 2012; Zheng

et al. 2013), which for our use, will be the intensity and position ensemble differ-

ences of the pre-TD and TD phases of Julia. Since TCG denotes the transition of a

non-developing tropical disturbance into a developing one, the PC of the EOF pat-

tern representing an intensity disagreement is used preferentially in the sensitivity

analyses.

As previously mentioned, the PC of either the leading EOF pattern (EOF 1)

or second EOF pattern (EOF 2) will act as a forecast metric for our sensitivities.

Following Chang et al. (2013) and Zheng et al. (2013), ensemble sensitivity is defined

as:

Sensitivity =
Cov(x, p)

sxsp
(3.1)

where p represents the PC, x is a meteorological parameter, and Cov(x, p) is the

covariance, defined by:

Cov(x, p) =
1

M − 1

M∑
i=1

[(xi − x̄)(pi − p̄)]

where (xi − x̄) and (pi − p̄) represent departures from the ensemble mean of x and

p, respectively. The sample standard deviations, sx and sp, are defined as:

s =

[
1

M − 1

M∑
i=1

(xi − x̄)2

]1/2
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with the range 1 . . .M representing the ensemble dimension, where M = 20. The

calculation of Eq. (3.1) is generated at every grid point over a 20◦ longitude × 15◦

latitude domain surrounding the ensemble cluster, identifying the PC’s sensitivity

to various meteorological parameters. It is evident that Eq. (3.1) is simply the Pear-

son’s correlation between the PC and a specific meteorological parameter at every

grid point. Caution must be taken when using such a parameter, since non-linearity

between variables is not captured by the correlation. We select meteorological pa-

rameters for Eq. (3.1) that have already been demonstrated to have physical sig-

nificance with the parameter whose ensemble disagreements were deconstructed via

the EOF process. By ensuring the existence of this physical significance, the sensi-

tivities calculated also have physical meaning, even if the relationship is not strictly

linear. In this regard, Gombos et al. (2012) explicitly mentioned the dilemma for

using model sensitivities to make dynamical inferences about the real atmosphere.

Such inferences can only be made when the ensembles realistically represent the

true atmospheric state. Since we already demonstrated that the ensemble forecasts

represent reasonable atmospheric states, dynamical inferences can be made using

ensemble sensitivities. Furthermore, keeping consistency with our previous inves-

tigations, we preferentially examine MSLP, upper-tropospheric warming, and deep

convection to gain a further understanding of their interconnectedness during the

TCG of Julia.
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3.5.2 Dominant ensemble variances during the pre-TD stage

Twelve and six hours respective before the NHC declared Julia a TD, note-

worthy variability (or spread) in several meteorological parameters exists between

the ensemble members. This spread is especially pronounced in PMIN estimates,

with ensemble sample standard deviation of near 1 hPa at 11/1800 and exceed-

ing 1 hPa at 12/0000. While seemingly small in comparison to ensemble forecasts

spreads for mature TCs or midlatitude disturbances, a spread of 1 hPa could mean

the difference between a TD and a non-developing tropical disturbance. Thus, it is

desirable for us to characterize the MSLP spread into patterns in order to see what

“kind” of disagreements exist between the ensemble members. These disagreements

may also be isolated in other meteorological parameters, such as upper-tropospheric

temperature anomalies and radar reflectivity. Using these isolated patterns of en-

semble spread, links between the parameters can be implied, both subjectively and

statistically (e.g., through ensemble sensitivity analyses). Furthermore, the evolu-

tion of the parametric ensemble spread and associated EOF patterns demonstrate

how the pre-TD Julia evolves in the ensemble members, and what processes might

be responsible for the changes in the patterns of disagreements. In the following

subsections, we show the ensemble spreads of MSLP, low-level absolute vorticity,

upper-level temperature anomalies, and deep convection, in addition to ensemble

sensitivity analyses.
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3.5.2.1 Variability in MSLP

Figs. 3.15 and 3.16 show the ensemble spread, ensemble mean, and the two

leading EOFs of MSLP that are identified as the dominant spatial patterns in the

ensemble spread at 11/1800 and 12/0000, respectively. We see three regions of

heightened spread with respect to the ensemble mean field at 11/1800. The spread

associated with faster developing ensemble members (or fast developers for short)

is marked by “M1”, and symbolizes the creation of pre-TD MSLP disturbances in

some members as demonstrated by the cluster of PMIN centers (Fig. 3.15a). Unlike

11/1800, a bull’s-eye of enhanced spread exists at 12/0000, with the sample standard

deviation exceeding 1 hPa (“M1”, Fig. 3.16a). The overall structure of the ensemble

sample standard deviation evolves into a monopole pattern by 12/0000, but with

enhanced spread extending eastward back toward the west African coastline (“M2”)

in close proximity to M2 from 11/1800. This eastward spread is supported by the

ensemble mean MSLP, which depicts an elongated closed 1008-hPa isobar extending

from the bull’s-eye center back to the coastline (Fig. 3.16a).

The largest mode in the ensemble spread at 11/1800 is depicted by the lead-

ing EOF (EOF 1), which explains 29.4% of the variance with a weak monopole

pattern centered near M1 (Fig. 3.15b). This monopole pattern is a characteristic

of an intensity disagreement between the ensemble members as demonstrated in

previous studies (Chang et al. 2013; Zheng et al. 2013). Thus, the pattern of most

disagreement between ensemble members at 11/1800 is the intensity of the pre-TD

Julia. Since we are looking at the “negative” phase of EOF 1, which happens to
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Figure 3.15: Spatial distributions, valid at 1800 UTC 11 Sep, of (a)
ensemble MSLP standard deviation (shaded, hPa) and ensemble mean
MSLP (contoured at intervals of 1 hPa); (b) the most reoccurring spatial
pattern of MSLP anomalies (i.e., the leading EOF; EOF 1) contoured
at intervals of 0.1 hPa; and (c) the second most reoccurring spatial pat-
tern of MSLP anomalies (EOF 2) contoured at intervals of 0.1 hPa.
The explained variance for EOF 1 (b), and EOF 2 (c) are 29.4% and
22.1%, respectively. “M1” and “M2” in (a) represent a maximum in the
MSLP ensemble spread associated with the faster developing members
and coastal variance, respectively. Each ensemble member’s PMIN center
at 1800 UTC 11 Sep is marked by an ×.
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represent negative MSLP anomalies, this pattern alludes to the presence of ensemble

members with stronger pre-TD disturbances at 11/1800. This intensity disagree-

ment becomes increasingly evident at 12/0000 as the leading EOF explains 47.3%

of the ensemble spread with a monopole pattern clearly situated within the ensem-

ble cluster and M1 (Fig. 3.16b). The leading EOFs from both times are supported

by findings previously, which depicted intensity differences when assessing the time

series of ensemble PMIN disturbances (Fig. 3.5a). Another common pattern shown

previously by Chang et al. (2013), and Zheng et al. (2013) is depicted in the second

EOF at 12/0000 (Fig. 3.16c). This dipole pattern is associated with positional dis-

agreements between the ensemble members, which is consistent with the enhanced

spread eastward from the bull’s-eye in Fig. 3.16a.

It is evident from the EOFs at both times that the most dominant differ-

ence between ensemble members is related to the intensity of the pre-TD Julia

(Figs. 3.15b and 3.16b). As ensemble solutions evolve in time and some members

develop pre-TD disturbances in terms of PMIN, the second leading EOF evolves into

the positional ensemble differences for the PMIN location (Fig. 3.16c). Recall that the

sign of the EOF pattern is not relevant. Even though EOF 1 represents a stronger

storm with negative MSLP anomalies at both times, its sign can be changed to rep-

resent the other phase, a weaker storm with positive MSLP anomalies. Moreover,

it is worth noting that EOFs can contain more than one pattern (e.g., monopole,

dipole, etc.), and thus, care needs to be taken to elucidate what possible pattern(s)

exist in any given EOF. This being said, since we are dealing with TCG the sign of

intensity EOFs will always represent the stronger storm phase (e.g., negative MSLP
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Figure 3.16: As in Fig. 3.15, but valid for 0000 UTC 12 Sep.
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anomalies), as we are interested in seeing a stronger TD Julia.

3.5.2.2 Variability in 925-hPa absolute vorticity

Since the growth of the LLV is an important part of TCG (Hendricks et al.

2004; Montgomery et al. 2006), Fig. 3.17 shows the 925-hPa absolute vorticity en-

semble spread, ensemble mean and related EOF patterns at 12/0000. At this time,

it is expected that a large variability exists between the members, since the process

by which the LLV forms is through the merging of numerous mesovortices and en-

hancement by deep convection. The control simulated TCG of Julia depicted that

two main mesovortices merge just prior to and after the TCG time of 12/0600 (see

chapter 2). Thus, it is expected that significant ensemble member differences ex-

ist for the location and strength of the main mesovortices that become the LLV in

each member at 12/0000. These disagreements are in turn expected to reduce the

variance explained for each of the 925-hPa absolute vorticity ensemble spread EOF

patterns.

Similar to the MSLP ensemble spreads at 12/0000, the 925-hPa absolute vor-

ticity spread has two centers of heightened variance, one located over water, the

other along on the coastline, marked by “V1” and “V2”, respectively (Fig. 3.17a).

The ensemble mean 925-hPa positive absolute vorticity center exceeds 9×10−5 s−1,

representing an elongated, weak vortex centered near V1. Given the weakness of the

ensemble mean vortex with an ensemble spread exceeding 6×10−5 s−1 near the en-

semble mean center, it is believed that the mean is averaging through many ensemble
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Figure 3.17: As in Fig. 3.15, but valid for 925-hPa absolute vorticity
anomalies (×10−5 s−1) at 0000 UTC 12 Sep including an additional EOF,
EOF 3 (d), which explains 11.5% of the total variance.

member mesovortices near V1, reducing the positive absolute vorticity magnitude in

some areas, while increasing it in the others. The location of the spread near V2 is

similar to that of M2 in Fig. 3.16a, though the pattern of vorticity variance is much

more pronounced in comparison to its MSLP counterpart.

The leading EOF pattern only explains 22.3% of the variance, representing

the low-level vorticity ensemble differences associated near V1. Comparing the lead-

ing EOFs of MSLP and 925-hPa absolute vorticity anomalies (cf. Figs. 3.16b and
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3.17b), the EOFs are nearly collocated with each other, though the MSLP variance

is slightly more westward than the vorticity field. As with EOF 2 of MSLP, EOF 2

of the low-level vorticity field represents a west-east dipole, demonstrating positional

disagreements with the developing LLV. Since the first two EOFs explain only 38%

of the variance, the third EOF is examined for any meaningful patterns. While

much less clear than the leading two EOFs, EOF 3 does hint at intensity uncer-

tainty centered on V2 and complements the west-east elongated variance exhibited

of MSLP (cf. Figs. 3.17d and 3.16a).

3.5.2.3 Variability in upper-tropospheric thermal anomalies

Complementing the disagreements in MSLP and low-level vorticity, similar

patterns of ensemble member differences exist for the 400-150 hPa layer-averaged

temperature anomalies shown in Figs. 3.18 and 3.19. At 11/1800, three maximum

in the upper-tropospheric ensemble spread exist with the spread associated with

the fast developers marked by “U1” (Fig. 3.18a). The pattern seen in the ensemble

spread at 11/1800 has similar characteristics to those of the MSLP ensemble spread,

alluding to the two parameters’ variability being linked (cf. Figs. 3.15a and 3.18a).

These three centers of enhanced upper-tropospheric temperature variance morph

into a pattern with two maximums in the ensemble spread at 12/0000, one over

water with a magnitude exceeding 0.45◦C (“U1”, Fig. 3.19a), and the other a slightly

weaker maximum near the west African coast with a magnitude of near 0.4◦C (“U2”).

As with 11/1800, these two maximums at 12/0000 closely resemble the locations of
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the two maximum variances in MSLP and low-level vorticity (cf. Figs. 3.16a, 3.17a,

and 3.19a), further alluding to some interconnectedness of the parameters. The

ensemble spread center at U1 is collocated with an ensemble mean warm region

with magnitude greater than -41.4◦C, while a meso-α area of warming in excess of

-41.8◦C encompasses both ensemble spread centers (Fig. 3.19a).

The first EOF pattern of 400-150 hPa temperature anomalies at 11/1800 rep-

resents positive temperature anomalies associated the heightened variance near U1

(Fig. 3.18b). This pattern explains 28.4% of the variance with a north-south elon-

gated monopole pattern. The second EOF represents an unbalanced dipole in the

north-south direction (Fig. 3.18c) and explains slightly less variance than EOF 1 but

with smaller amplitude compared to the leading EOF (e.g., 0.2◦C versus 0.15◦C).

Most importantly, the leading EOF evolves into a monopole representing positive

upper-tropospheric temperature anomalies centered with the enhanced ensemble

spread near U1 at 12/0000 (Fig. 3.19b). Unlike its counterpart at 11/1800, EOF 2

at 12/0000 represents positive temperature anomalies along the coastline, consistent

with the ensemble spread centered near U2 (cf. Figs. 3.16c, 3.17d, and 3.19c). The

enhanced variance associated with EOF 2 can be explained partially by disagree-

ments in deep convection shown in the next subsection.

3.5.2.4 Variability in convection anomalies

Previous studies have mentioned the important role of persistent deep convec-

tion in TCG through preconditioning the midtroposphere with moisture and its role
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Figure 3.18: As in Fig. 3.15, but valid for 400-150 hPa layer-averaged
temperature anomalies (◦C) at 1800 UTC 11 Sep.
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Figure 3.19: As in Fig. 3.15, but for 400-150 hPa layer-averaged temper-
ature anomalies (◦C) valid at 0000 UTC 12 Sep.
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in upper-tropospheric warming (Dunkerton et al. 2009; Hopsch et al. 2010). Thus, it

is desirable to evaluate the general convective structure disagreements in the hours

prior to TCG. One should keep in mind that substantial variances appear in the

location, magnitude, and extent of deep convection during TCG when ensemble

member differences are assessed. In this regard, we previously have demonstrated

the large differences in deep convection between developers and non-developers from

the ensemble. As a result, dominant patterns and modes of variability could be much

“noisier” than other parameters, such as MSLP.

At 12/0000, the ensemble spread of composite radar reflectivity exceeds 7

dBZ for an area larger than that encompassed by the ensemble mean compos-

ite radar reflectivity, signifying large disagreements between ensemble members for

the placement and intensity of convection associated with the pre-TD disturbance

(Fig. 3.20a). Even with the large variability, the ensemble mean depicts a weak

MCS with reflectivity returns exceeding 25 dBZ centered to the south of the PMIN

cluster. Interestingly, the PMIN cluster is closely collocated with ensemble spread

exceeding 14 dBZ, hinting at ensemble disagreements with convective development

near the storm center’s of each member.

Decomposing the ensemble variance reveals two main EOF patterns, each

explaining 33.8% and 18.7% of the total variance, respectively (Figs. 3.20b,c). The

leading EOF represents a dipole with positive reflectivity anomalies centered to

the northeast of the PMIN cluster and ensemble mean composite radar reflectivity.

Such a pattern alludes to the presence of enhanced (or decreased) convection to

the north of the ensemble member centers at 12/0000 in addition to positional
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Figure 3.20: As in Fig 3.15, except for composite radar reflectivity
anomalies (dBZ) valid at 0000 UTC 12 Sep.
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uncertainties given the location of the gradient of the ensemble mean reflectivity

in relation to the explained variance. The second EOF, however, with its positive

composite reflectivity returns over the coastline, closely mimics the location of the

second EOF of upper-tropospheric temperature spread (cf. Figs. 3.19c and 3.20c),

as well as MSLP and low-level positive absolute vorticity (cf. Figs. 3.16c, 3.17d, and

3.20c).

3.5.3 Ensemble sensitivity analyses during the pre-TD stage

Given the presence of ensemble disparity in MSLP during pre-TD Julia’s evolu-

tion, it is desirable to examine which parameter(s) these disagreements are sensitive

to. Previously we demonstrated the importance of upper-tropospheric warming for

meso-α-scale MSLP falls during the TCG of Julia. We have alluded to the impor-

tance of deep convection and coherent storm-scale outflow for the development of

upper-level warming. To supplement these findings, an ensemble sensitivity analysis

with Eq. (3.1) is used below to identify the mechanisms responsible for the patterns

of differences in MSLP and upper-tropospheric temperature anomalies. Of partic-

ular interest to this study is the transition from storm-scale MSLP falls induced

by upper-tropospheric thermodynamic changes to storm-scale MSLP falls induced

by the WISHE. We separate the former method from the latter since the upper-

tropospheric warming during TCG typically results from latent heating and not as

a response due to balanced flow through thermal wind balance. It is obvious that

TCG is itself a process characterized by imbalance, as it is merely a transition state.
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Thus, while WISHE helps a balanced TC intensify, hydrostatically induced MSLP

falls are necessary for TCG to occur. The upper-level warming is complemented by

the development of a storm-scale outflow beyond the Rossby radius of deformation

that traps the warming near the storm center. Finally, we investigate if there is any

meaningful correlation between upper-level warming and deep convection.

3.5.3.1 MSLP 12/0000 EOF 1 Sensitivity

Since we are concerned with intensity differences in the forecasts of pre-TD

Julia, the PC of EOF 1 of the MSLP variance (Fig. 3.16b) is used as the forecast

metric in Eq. (3.1), while the 400-150 hPa layer-averaged temperature anomalies

and surface latent heat flux anomalies are employed as the meteorological parameter

(“x”) to assess the sensitivity of EOF 1 to upper-tropospheric warming and WISHE,

respectively. The sensitivity to both parameters is traced back to 11/1200 at 6 h

intervals. Given the similarities of the MSLP and low-level vorticity EOF patterns,

we decide to choose the MSLP EOFs for sensitivity analyses given our previous

research predominately focusing on the MSLP disturbance. Further, we have shown

the formation of a coherent MSLP disturbance on the meso-α scale prior to the

existence of a coherent LLV, and obviously, lower MSLPs enhances PBL convergence

which can enable subsequent growth of the LLV.

As expected, a large positive sensitivity exists between the PC and upper-

tropospheric temperature anomalies (Fig. 3.21a), exceeding 0.6 for the Pearson’s

correlation. That is, to reproduce the negative MSLP anomalies shown in EOF 1
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Figure 3.21: Ensemble sensitivity [Eq. (3.1), shaded] of the 0000 UTC
12 Sep MSLP EOF 1 (Fig. 3.16b) PC values to (a) – (c) the 400-150 hPa
layer-averaged temperature anomalies; and (d) – (f) surface latent heat
flux anomalies (±0.42 is statistically significant at the 95% confidence
interval). Spaghetti plots for each member’s MSLP (black contours, hPa)
and ensemble mean (bold white contour) are overlaid for various isobars.
The sensitivities are given at (a) and (d) 0000 UTC 12 Sep (i.e., the time
at which the EOF pattern is valid); (b) and (e) 1800 UTC 11 Sep; and
(c) and (f) 1200 UTC 11 Sep. The maximum amplitude location of the
respective EOF pattern is marked in (a) and (d) by an ×.
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(Fig. 3.16b), the upper-tropospheric temperatures must increase accordingly. The

cluster of ensemble members whose MSLP minimum are directly collocated with the

statistically significant correlations supports the importance of upper-tropospheric

temperature anomalies for MSLP falls during TCG, as well as the faster developers

at 12/0000 (cf. Figs. 3.16a,b and 3.21a).

In contrast, the correlation between the PC and surface latent heat flux anoma-

lies is weaker near the peak amplitude of EOF 1, though still reaching statisti-

cally significant correlations in collocation with the cluster of ensemble members

(Fig. 3.21d). Much larger correlations with the surface heat flux exist well away

from the developing MSLP centers, suggesting stronger winds on the fringes of the

developing low-level circulation (Fig. 3.21d). Additionally, this correlation should

be thought in the context of that the winds associated with the pre-TD Julia in all

members are not capable of employing the WISHE for intensification. Thus, the

association can be thought of as substantial variance in the low-level wind speed

within the ensemble.

Tracing the sensitivities back in time, it is evident that the upper-tropospheric

temperature anomalies at 11/1800 correlate well with the MSLP EOF 1 variance

explained at 12/0000 (Fig. 3.21b). This is contrasted by the surface latent heat

flux anomalies whose correlation with the PC quickly diminishes prior to 12/0000

near the ensemble cluster (Figs. 3.21e,f). This reduction is as expected, however,

as prior to 12/0000, the sustained surface winds associated with the pre-TD Julia

are mostly below 10 m s−1 in all ensemble members and they occur mainly over

land. A stronger correlation to surface latent heat flux anomalies still exists well
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west from the storm centers, again implying increased winds on the fringes of the

developing circulation (Figs. 3.21e and 3.21f). The positive correlation between the

upper-tropospheric temperature anomalies and the PC continues at 11/1200 with a

slight eastward shift towards the coastline (Fig. 3.21c).

3.5.3.2 Upper-tropospheric Temperature 12/0000 EOF 1 Sensitivity

Fig. 3.22 shows the sensitivity of the leading EOF of upper-level tempera-

ture anomalies to the 400-150 hPa layer-averaged relative divergence and composite

radar reflectivity anomalies. We see that near and to the north of the ensemble

cluster center of -36.9◦C isotherms strong positive sensitivities occur between the

PC of the leading EOF and 400-150 hPa relative divergence (Fig. 3.22a). This re-

sult indicates that to reproduce EOF 1 and its positive 400-150 hPa layer-averaged

positive temperature anomalies, enhanced divergence in the same layer must occur

(e.g., an enhanced storm-scale outflow). This sensitivity near the storm cluster is

the largest magnitude correlation within the domain that the sensitivities are calcu-

lated within, suggesting that there is a physical mechanism behind the correlation,

and thus, do not represent a “false” sensitivity. In a similar fashion to the relative

divergence, strong positive correlations exist between the PC and composite radar

reflectivity (Fig. 3.22d). Such a positive correlation alludes to the need for enhanced

convection (positive composite reflectivity anomalies) to reproduce the positive tem-

perature anomalies of EOF 1 (cf. Figs. 3.19b and 3.22d). These connections are

consistent with our findings previously, which noted that enhanced deep convection
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enabled a more coherent storm-scale outflow, and thus, an accumulation of warmth

in the upper-troposphere as the Rossby radius of deformation shrinks.

At 11/1800, the sensitivity of the upper-tropospheric temperature variance to

upper-level divergence and deep convection becomes much less clear. While strong

positive correlations between the leading EOF and divergence appear just off the

coastline (Fig. 3.22b), weak correlations, if any, exist further east near the ensemble

cluster. Given that the maximum amplitude of the EOF is purely situated over

water, it is believed that the positive correlations seen off the coastline in Fig. 3.22b

do represent the propagation of statistically significant correlations eastward back

in time, e.g., with the propagation of the convective activity. This is further sup-

ported by the statistically significant correlations just off the coastline at 11/1200

(Figs. 3.22c and 3.22f), consistent with progression of the AEW and embedded

convection off the west African coast.

3.5.4 Dominant ensemble differences during the TD stage

As the ensemble solutions evolve, differences between the ensemble members

become increasingly evident. A schism between developers and non-developers was

alluded to earlier in this chapter and also demonstrated distinct differences in the

ensemble when comparing the MSLP disturbances with upper-tropospheric warm-

ing. Even with such a dichotomy, 18 of the 20 ensemble members generate a storm

with a PMIN greater than the NHC estimate of 1007 hPa. Furthermore, the ensem-

ble mean PMIN of 1004 hPa is 1 hPa stronger than the control simulation. This
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Figure 3.22: As in Fig. 3.21, except for the leading EOF of the 0000 UTC
12 Sep upper-tropospheric temperature anomalies (Fig. 3.19b) and its
sensitivity to (a) – (c) 400-150 hPa layer-averaged relative divergence
anomalies; and (d) – (f) the composite radar reflectivity anomalies (d-f).
The sensitivities depicted in (d) – (f) are only plotted for radar reflec-
tivities greater than 0 dBZ for all ensemble members and the ensem-
ble mean. Otherwise, the sensitivities are masked out since convection
does not exist (i.e., composite radar reflectivities at or below 0 dBZ).
Spaghetti plots for each member’s 400-150 hPa layer-averaged tempera-
ture (black contours, ◦C ) and ensemble mean (bold white contour) are
overlaid for various isotherms.
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increase in storm intensity spread co-exists with fundamental changes in the spread

of upper-tropospheric temperatures and meso-α-scale variability in deep convection.

3.5.4.1 Variability in MSLP

The MSLP ensemble spread, ensemble mean and the leading patterns of spread

for 12/0600 are given in Fig. 3.23, showing that the ensemble spread evolves from its

12/0000 spread pattern into a single monopole (“M1”) centered near the ensemble

mean and the cluster of PMIN centers with little extension back towards the coast-

line. As expected, the magnitude of ensemble spread further increases from that at

12/0000, demonstrating the divergence of the ensemble member solutions.

As with 12/0000, the leading EOF pattern depicts that the main disagreement

between ensemble members is the intensity of the developing Julia (Fig. 3.23b).

However, this pattern only explains 45% of the total spread, a reduction of 2.3% from

the similar monopole pattern at 12/0000 (cf. Figs. 3.23b and 3.16b). This change

is complemented by an increase in variance explained by EOF 2, which portrays

a dipole of positional disagreements centered near M1 with an explained variance

of 30.9%. This represents an increase of 4.7% over the positional differences EOF

at 12/0000. Even with the change in the amount of total variance explained, the

dominant mode of ensemble disagreements between ensemble members regarding TD

Julia is storm intensity, followed by a northwest-southeast positional disagreements.
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Figure 3.23: As in Fig. 3.15, but valid for 0600 UTC 12 Sep.

113



3.5.4.2 Variability in 925-hPa absolute vorticity

In a similar fashion to the MSLP variance, the transformation from the two

maximum spread centers at 12/0000 to one center at 12/0600 appears in the 925-hPa

absolute vorticity as well (“V1”, Fig. 3.24a). This spread exceeds 8×10−5 s−1 with

the ensemble mean exceeding 12×10−5 s−1 centered on the heightened spread. They

represent increases of 2×10−5 s−1 and 5×10−5 s−1 from their 12/0000 magnitudes,

respectively, exemplifying the divergence in ensemble solutions for the development

of the LLV. Enhanced ensemble spread extends north of V1, suggesting some member

disagreements extending to the north of the ensemble cluster. In addition to this

northward spread, the maximized spread at V1 is nearly collocated with the locations

of maximum spread of MSLP intensity (cf. Figs. 3.23a and 3.24a).

The leading EOF pattern represents east-west positional uncertainties asso-

ciated with the developing LLV, explaining 27.4% of the variance (Fig. 3.24b).

This pattern is followed by intensity disagreement shown in EOF 2, which has a

monopole centered near V1 and explains 18.1% of the variance. Finally, EOF 3

shows the north-south positional disparity that the ensemble spread alluded to (cf.

Figs. 3.24a and 3.24d). Using these EOF patterns, it is clear that the development

of the LLV is underway in the majority of ensemble members with positional and

intensity differences that are isolated in the leading EOF patterns.
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Figure 3.24: As in Fig. 3.15, except for the 925-hPa absolute vorticity
(×10−5 s−1) valid for 0600 UTC 12 Sep, including an additional EOF,
i.e., EOF 3 (d), which explains 14.7% of the total variance.
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3.5.4.3 Variability in upper-tropospheric thermal anomalies

An increase in the upper-tropospheric temperature variability complements

the storm intensity disagreements at 12/0600, as shown in Fig. 3.25a. The ensem-

ble spread of upper-tropospheric temperature exceeds 0.5◦C, an increase of 0.05◦C

from the pre-TD stage (cf. Figs. 3.19a and 3.25a). While this increase in spread is

notable, the changes to the spatial characteristics of the spread allude to more sig-

nificant disagreements in the 400-150 hPa layer-averaged temperature field between

ensemble members. Instead of the two maximums seen at 12/0000 (Fig. 3.19a), a

single maximum appears at 12/0600 (see “U1” in Fig. 3.25a), suggesting that the

main disagreement between the ensemble members is related to the magnitude of

the upper-tropospheric temperature anomalies. Additionally, the maximum at U1

is directly collocated with the maximum ensemble spread of MSLP anomalies (cf.

Figs. 3.23a and 3.25a) and PMIN cluster, which is consistent with the interconnected-

ness seen at 12/0000. The ensemble mean 400-150 hPa layer-averaged temperatures

show a warming of approximately 0.5◦C from 12/0000, with a meso-α-scale region

of warmth centered on the ensemble spread (Fig. 3.25a).

The leading EOF pattern of upper-tropospheric temperature anomalies at

12/0600 describes ensemble differences on the eastern portion of the ensemble clus-

ter, with a monopole pattern displaced just east of the maximum of ensemble spread

(Fig. 3.25b). This pattern explains 42.5% of the total variance, an increase over the

41.7% explained by the leading EOF at 12/0000. EOF 2, explaining 29.2% of the

total variance, resembles an uneven dipole with positive magnitude pole displaced
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Figure 3.25: As in Fig. 3.15, except for the 400-150 hPa layer-averaged
temperature anomalies (◦C) valid at 0600 UTC 12 Sep.
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westward of U1 (Fig. 3.25c). While technically a dipole, it is clear that EOF 2

resembles more a monopole feature just west of the center of the largest total vari-

ance. The superposition of these two EOF patterns represents both the intensity

and positional differences associated with the 400-150 hPa layer-averaged temper-

ature anomalies, with some members displaying an eastward shift in the positive

upper-tropospheric temperature anomalies, while others depict a westward shift

from the center of maximum total variance. Without the decomposition of the to-

tal variance field using EOFs, these characteristics of the ensemble spread would

remain unknown, and important features of the ensemble differences would remain

overlooked.

3.5.4.4 Variability in convection anomalies

As compared to the pre-TD stage, it is evident that the ensemble mean com-

posite radar reflectivity exhibits a weak MCS with maximum radar reflectivity re-

turns exceeding 30 dBZ, increasing the peak reflectivity by roughly 5 dBZ from

12/0000 (cf. Figs. 3.20a and 3.26a). A major difference from 12/0000 is that the

ensemble cluster of PMIN is collocated at the center of the ensemble mean MCS,

demonstrating the possibility of substantial convective development near the storm

centers of some ensemble members (Fig. 3.26a). However, in a fashion similar to

that at 12/0000, the ensemble spread is maximized to the north of the ensemble

mean center and exceeds 14 dBZ, signifying substantial disagreement between the

ensemble members on the northern extent of convective development.
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Figure 3.26: As in Fig. 3.15, except for the composite radar reflectivity
anomalies (dBZ) valid at 0600 UTC 12 Sep.
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Pulling out the leading EOF yields that the most reoccurring disagreement

between ensemble members for composite radar reflectivity anomalies represents

predominately positional disagreements (Fig. 3.26b). Even though weak, the un-

even magnitude of the dipole depicts that the EOF pattern is not purely positional

and includes some intensity differences between ensemble members. EOF 2 depicts

intensity disagreement centered on the maximum of ensemble spread with a magni-

tude exceeding 8 dBZ (Fig. 3.26c). These two patterns demonstrate that the main

ensemble spreads of deep convection are related to the west-east position as well as

the strength of deep convection to the north of the ensemble mean. Additionally, the

patterns of spread and EOFs match the variance and EOFs of the low-level vortic-

ity (cf. Figs. 3.24 and 3.26), suggesting the possible roles of convectively-generated

vortices in the formation of the LLV.

3.5.5 Ensemble sensitivity analyses at the TD stage

3.5.5.1 MSLP 12/0600 EOF 1 sensitivity

Fig. 3.27 presents the ensemble sensitivity analysis for PC 1 of MSLP anoma-

lies (Fig. 3.23b). The instantaneous sensitivity (Figs. 3.27a,d) is strongly positive

near the 1006-hPa ensemble cluster with correlations exceeding 0.8 for both param-

eters. A notable increase from 12/0000 in the instantaneous sensitivity between the

PC and surface latent heat flux anomalies occurs with correlations exceeding 0.6 for

the majority of the ensemble cluster. This is further evidenced by the substantially

larger region of statistically significant correlations, alluding to the increase in in-
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tensity and spatial extent of the low-level circulation field as exemplified 1009-hPa

ensemble cluster (Fig. 3.27d). The strongest correlations between the PC and upper-

tropospheric temperature exist to the southwest of the ensemble cluster, suggest-

ing enhanced MSLP variance resulting from the upper-tropospheric temperatures

downstream of the greatest MSLP variance (Fig. 3.27a). The ensemble mean surface

maximum wind exceeds 12 m s−1, and thus, WISHE can be employed for generating

MSLP falls in the stronger ensemble members. Since PC 1 is strongly correlated

with both parameters within the ensemble cluster at 12/0600, we may state that

both hydrostatically-induced and WISHE-induced MSLP falls are occurring and are

dependent on the strength of the ensemble member disturbance.

Tracing the sensitivities back in time, statistically significant positive correla-

tions between PC 1 and upper-tropospheric temperature anomalies exist back until

11/1800 near the ensemble cluster and within the general larger-scale disturbance

encompassed by the 1010 hPa isobar cluster at 12/0000 (Figs. 3.27b,c). On the other

hand, the positive correlations between PC 1 and surface latent heat flux anomalies

diminish quickly, with an indiscernible correlation at 11/1800 (Figs. 3.27e,f). The

most notable reduction of statistically significant positive correlation exists between

12/0600 and 12/0000 as the most robust correlations are confined to the edges of

the developing low-level circulation (Fig. 3.27e). Some statistically significant cor-

relations exist with the latent heat flux anomalies near the ensemble cluster, but is

much less meaningful when compared to the upper-tropospheric temperatures (cf.

Figs. 3.27b and 3.27e). The reduction in correlations with surface latent heat flux

anomalies makes physical sense, however, as the ensemble mean surface maximum
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Figure 3.27: As in Fig. 3.21, except for the sensitivity of the 0600 UTC
12 Sep MSLP EOF 1 (Fig. 3.23b) PC values.
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sustained wind speed is below 10 m s−1 at 11/1800, and thus, the MSLP variance

at 12/0600 is unlikely to be caused by positive surface latent heat flux anomalies

via WISHE at 11/1800.

3.5.5.2 Upper-tropospheric temperature 12/0600 EOF 1 and 2 sen-

sitivities

Since both EOFs patterns depicted in Figs. 3.25b and 3.25c represent impor-

tant features of the upper-temperature ensemble spread, it is of interest to examine

the sensitivity of both EOFs to the 400-150 hPa layer-averaged relative divergence

and composite radar reflectivity anomalies.

Fig. 3.28 shows the sensitivity of EOF 1 to upper-level divergence and deep

convection. As at 12/0000, a strong positive instantaneous sensitivity exists between

the PC of the EOF and both meteorological parameters near the ensemble cluster

and maximum amplitude of the EOF pattern (see “×” in Figs. 3.28a and 3.28d).

These positive sensitivities shift eastward back in time as the upper-tropospheric

temperatures at 12/0600 are well correlated with enhanced deep convection and

divergence propagating off the west African coastline. Similar patterns and corre-

lations are seen for the second EOF (Fig. 3.25c) with relevant positive correlations

with divergence and composite radar reflectivity anomalies near the ensemble cluster

and maximum amplitude location of the EOF (Fig. 3.29). While other sensitivities

exist for both EOFs away from the ensemble clusters, they are generally of less

magnitude than those of the sensitivities near the cluster, and thus, yield little, if

123



Figure 3.28: As in Fig. 3.22, except for the sensitivity of the 0600 UTC
12 Sep upper tropospheric temperature EOF 1 PC values (Fig. 3.25b).
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any, meaningful information on the implications for the EOF patterns examined.

3.5.6 Summary and discussion

The previous constructed EOFs for multiple parameters to identify the dom-

inant patterns of ensemble spreads for the TCG of Hurricane Julia (2010). Using

these parametric patterns of differences, we are able to make inferences for the

dominant mechanisms responsible for the ensemble spreads, and for how each of the

spread of the multiple parameters are connected. Two main stages were investigated

for parametric ensemble differences: i) pre-TD stage; and ii) TD stage.

It is found that the dominant pattern of MSLP disagreements is related to the

intensity of the pre-TD and TD Julia, explaining nearly half of the total ensemble

variance at both times. The second leading mode of variance for MSLP is related

to the position of the developing TD Julia, demonstrating the difference between

faster and slower developing members. Similar patterns are found in the variance

of 925-hPa absolute vorticity, though with much less explained variance per EOF.

The ensemble spread in MSLP and low-level absolute vorticity is comple-

mented by similar patterns of variance in upper-tropospheric temperatures, sug-

gesting that the variance of the variables are linked. At the pre-TD stage, the

maximum of multiple MSLP variance centers are collocated with centers of the

maximum upper-tropospheric temperature variance. As the MSLP variance pat-

tern morphs into a monopole pattern during the TD stage, so does the upper-level

temperature variance, closely located to the cluster of ensemble member storm cen-
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Figure 3.29: As in Fig. 3.22, except for the sensitivity of the 0600 UTC
12 Sep upper tropospheric temperature EOF 2 PC values (Fig. 3.25c).
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ters. Consistent with the pre-TD stage, the EOFs at the TD stage depict the same

characteristics, but characteristic patterns representing faster and slower developing

members, instead of just one group of ensemble members.

To examine what causes the MSLP changes during TCG, ensemble sensitivity

analyses were performed to compare if upper-tropospheric temperature anomalies

or WISHE are responsible for the MSLP changes at both stages. At the pre-TD

stage, strong positive sensitivities exist between the upper-tropospheric temperature

anomalies and the EOF representing negative MSLP anomalies (e.g., a stronger pre-

TD Julia). This sensitivity is coherent and traceable back in time, suggesting that to

make the pre-TD Julia stronger, increases in upper-tropospheric temperatures must

occur in the hours prior and at 12/0000. Contrasting this result, the sensitivity

of the EOF pattern to surface latent heat flux anomalies at the pre-TD stage is

less robust. While some positive correlation exists instantaneously, the sensitivity

quickly diminishes back in time. Links between upper-tropospheric temperature

anomalies and deep convection are illustrated through further ensemble sensitivity

analyses. It is evident that the strength of the upper-level warming during TCG

is positively correlated to enhanced composite radar reflectivity anomalies (e.g.,

enhanced deep convection) and its divergent outflow.

Overall, the EOF and ensemble sensitivity results paint a more holistic pic-

ture describing the predictability of TCG of Hurricane Julia through a variety of

statistical inferences of important meteorological parameters for the occurrence of

TCG. The methods herein would benefit other studies using ensembles to investi-

gate particular meteorological phenomena, including TCs. Identifying the dominate
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characteristics of the ensemble as a whole can provide a much more robust analysis

than investigating and comparing individual ensemble members. That being said,

the method does have its deficiencies, mainly that statistical inferences of dynamical

processes can yield unrealistic conclusions, or ones that do not adhere to the gov-

erning equations. Regardless of this shortcoming, the results of this section provide

insight on the dominant modes of variability occurring during TCG and elucidate

how the variability of multiple parameters is woven together.
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Chapter 4: The impacts of ice cloud

microphysics on genesis

4.1 Introduction

While numerous studies have investigated the impacts of cloud microphysical

processes on track and intensity changes of mature TCs, little work has identified

any impacts of these processes on TCG, defined as the transition of a non-developing

tropical disturbance into a developing one. Given the range of scales that TCG takes

place across, it seems intuitive that cloud microphysical processes play an important

role in aiding (or deterring) the development of a pre-TD disturbance.

The impacts of microphysical processes on the intensity of mature TCs has

been studied extensively for several decades now, dating back to a study by Lord

et al. (1984), who studied the use of a 3-class ice microphysics scheme versus a

no-ice scheme for the development of an idealized TC. Obviously, the use of ice

microphysical processes created a more realistic representation of the idealized TC,

while the results set the stage for discussion on the roles of cold-cloud microphysics

for TC development. More recently, other studies have used advanced models and

idealized experiments to show significant changes to TC intensity as a result of
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modifications to the microphysics scheme (e.g., McFarquhar et al. 2006; Wang 2002;

Zhu and Zhang 2006). Notably, the study by Zhu and Zhang (2006) found significant

differences for the intensity of Hurricane Bonnie (1998) and the inner-core structure

of the storm by modifying certain parameters of the microphysics scheme used in

the control simulation. Specifically, they removed various processes (such as the

melting of ice, snow and graupel) and compared the results to a control simulation.

The results demonstrated that removing all ice microphysics produced the weakest

storm of the sensitivity simulations, exemplifying the importance of water phase

changes to the intensity of a mature TC.

Of particular interest to this study is how TCG is impacted by ice microphysics

and related heating. We previously have alluded to and demonstrated that the inten-

sity of pre-TD disturbances inspected in chapters 2 and 3. This warming hydrostat-

ically induces meso-α-scale MSLP falls that lead to the development of the MSLP

PMIN disturbance, and subsequent LLV. Furthermore, we have postulated that the

upper-tropospheric warming during TCG results partly from depositional heating

due to persistent deep convection and storm-scale outflow expanding the warm air

out over a meso-α-scale region. From the large magnitudes of cloud ice mixing ra-

tios collocated with the upper-level warming shown previously, we concluded that

the warming resulted from depositional growth of cloud ice within strong convec-

tive vertical motions (e.g., CBs) found during the TCG process. Expanding upon

our previous results, the following will investigate the role of cloud microphysical

processes in the TCG of Hurricane Julia.
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4.2 Experimental design and model details

To conduct the sensitivity experiments, this study modifies the WRF model

setup used to create the control simulation described in chapter 2. Version 3.2.1 of

the fully compressible, nonhydrostatic mesoscale WRF model with ARW core (Ska-

marock et al. 2005) is used with three nests (9/3/1 km) as depicted by the boxes

given in Fig. 2.3 (D1, D2, and D3, respectively). The sensitivity simulations are ini-

tialized at 10/0000 and end at 12/1800, when the NHC center declared Julia a TS,

in the same fashion as the control. Thus, the simulations are integrated for a total

of 66 h with TCG taking place 54 h into the integration at 12/0600. As with the

control, the lateral boundary and initial conditions are supplied by the ERA-Interim

analysis except for SSTs. Instead, SSTs are obtained from the NOAA Optimal In-

terpolation high-resolution SST data set (Reynolds et al. 2007) valid at 10/0000,

and remain fixed for entire integration. The 9- and 3-km resolution domains incor-

porate simultaneously the Kain-Fritsch convection parameterization scheme (Kain

2004; Kain and Fritsch 1990), while this scheme is bypassed in the 1-km resolution

domain. The sensitivity simulations also utilize the the Rapid Radiative Transfer

Model (RRTM) longwave radiation scheme (Mlawer et al. 1997), the Dudhia (1989)

shortwave radiation scheme, and the Yonsei University (YSU) planetary boundary

layer (PBL) scheme (Noh et al. 2003).

The control and sensitivity simulations employ the Thompson graupel 2-moment

microphysics scheme (Thompson et al. 2008, 2004). This scheme predicts the mass

tendencies of cloud water, rain water, cloud ice, snow, and graupel, while also pre-
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dicting the number tendencies of cloud water and ice. As mentioned previously,

the study herein focuses on the warming of the upper troposphere during TCG.

Thus, the modifications made to the Thompson scheme are simple yet yield sub-

stantial changes to upper troposphere thermodynamic characteristics, and in turn,

the development of the pre-TD disturbance.

A summary of the experimental design is given in Table 4.1. The first experi-

ment, named “No Fusion”, removes the latent heat of fusion in depositional growth

and sublimation to study the impacts of fusion heating during TCG. Since we have

shown a large accumulation of cloud ice content aloft during the TCG of Hurricane

Julia, this experiment will remove the heating associated with cloud ice generation.

The Thompson scheme defines the enthalpy of sublimation, vaporization, and fu-

sion using standard values found at 0◦C: enthalpy of vaporization (LV) = 2.5×106

J kg−1; enthalpy of sublimation (LS) = 2.834×106 J kg−1, and enthalpy of fusion

(LF) = 3.34×105 J kg−1. Examining LS, it is obvious that the enthalpy released into

the environment from deposition is just the sum of the enthalpy of vaporization and

fusion: LS = LV + LF. Thus, the sensitivity experiment removes the latent heat

of fusion from this sum, still allowing for condensational heating and evaporational

cooling: LS = LV = 2.5×106 J kg−1. The modification still allows for the portion

of cloud water mass to become cloud ice and only reduces the amount of heating

released into the environment during this process by that of LF.

In addition to deposition, it is possible that homogeneous freezing aids in the

upper-tropospheric warming given the strong vertical motions (i.e., CBs) during

TCG. Thus, it is worthwhile to investigate if any rapid transport of cloud water
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Table 4.1: Summary of the experimental design.

Experiment Description

Control Control simulation with Thompson microphysics scheme
No Fusion As in the control but with LS = LV

No HFRZ As in control but with no homogeneous freezing

to upper troposphere and subsequent homogeneous freezing occurs during TCG. In

the Thompson scheme, the temperature at which all cloud water must be frozen to

become cloud ice is 235.16K. At or below this temperature, the scheme recalculates

the tendencies of cloud ice mixing ratio and number concentration, then calculates

the new temperature tendency based on the mass of cloud water remaining below

235.16K. To test the impacts of homogeneous freezing on the upper-tropospheric

warming, the second sensitivity experiment removes any homogeneous freezing and

is called experiment “No HFRZ” (Table 4.1). To remove homogeneous freezing, the

temperature at which cloud water must turn to cloud ice is changed from 235.16K

to 100K. This temperature effectively turns off any homogeneous freezing as the

temperatures will never get to or below 100K during the model integration.

4.3 Results

The following will describe the results of each sensitivity experiment in relation

to the control. Obviously, the main focus is on the changes to the thermodynamic

structure of the upper troposphere, and in turn, the implications for the developing

pre-TD MSLP disturbance. Before going in depth on the simulation differences, we
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will examine the first-order results (e.g., track and PMIN intensity) to determine any

notable differences. These results will be followed by a more holistic look at the

changes to the upper troposphere, deep convection, and other pertinent variables

for TCG.

4.3.1 Track and intensity differences

As shown in Fig. 4.1a, very minimal track differences exist between the en-

semble members. These minimal differences include the phase speed of the system

and its period of coastal transition. While little track differences exist, the same is

not true for the PMIN of the developing disturbance. When compared to the control,

the two sensitivity experiments have nearly similar PMIN as the control prior until

11/1200, albeit with some variability (Fig. 4.1b). After this time, the No Fusion

solution starts to diverge from the control and No HFRZ simulations in concurrence

with differences in the development and extent of deep convection at 11/1800 (cf.

Figs. 4.1b and 4.2a-c).

By 12/0000, the No Fusion simulation depicts a PMIN disturbance approxi-

mately 2 hPa weaker than the control and a much less coherent mesoscale convec-

tive system (MCS; cf. Figs. 4.1b and 4.2d-f). These differences between No Fusion

and the control continue at 12/0600 with the No Fusion experiment exhibiting a

less spatially expansive and weaker MCS (Fig. 4.2g) and weaker MSLP disturbance

(Fig. 4.1b). By the end of the 66-h integration, the No Fusion simulation never

develops a TD while the other simulations go onto strengthen the TD into a TS at
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Figure 4.1: Comparison of sensitivity simulations for: (a) track and (b)
storm intensity in terms of minimum central pressure (PMIN) from 0600
UTC 10 to 1800 UTC 12 Sep. The control, simulation without fusion
heating in deposition, and simulation without homogeneous freezing are
given by the black circles, blue squares, and red ×s, respectively.
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12/1800. Clearly, the main differences between No HFRZ and the control are much

less substantial than the comparison of No Fusion and the control, as demonstrated

in the progression of the PMIN disturbances as well as the progression of the MCS

(cf. Figs. 4.2b,e,h to 4.2c,f,i).

4.3.2 Upper level and MSLP differences

Given the differences as evidenced in Figs. 4.1 and 4.2, the following will

examine the disparity between the simulations in the upper troposphere as well as

their connections to differences in the developing MSLP disturbance. Fig. 4.3 depicts

the 200 hPa temperature and co-moving wind fields in relation to the MSLP field.

Beginning at 11/1800 when the differences between the simulations start to emerge

(Fig. 4.1b), it is evident that the control and No HFRZ have 200 hPa temperatures

greater than -53◦C for a large region just off the west African coast (Figs. 4.3b,c).

In contrast, the No Fusion simulation exhibits a much weaker and sporadic area of

200-hPa temperatures greater than -53◦C. Such a difference results in a contraction

of the 1007 hPa isobar closer to the coastline in comparison to the other simulations

(cf. Figs. 4.3a-c).

As deep convection starts to develop in the control and No HFRZ at 12/0000

(Figs. 4.2e,f), 200-hPa temperatures warm in a mesoscale region collocated with

the deep convection and a notable mesoscale PMIN disturbances emerge below the

upper-tropospheric warming in each simulation (Figs. 4.3e,f). While convective de-

velopment still occurs in the No Fusion simulation, no warming of the 200-hPa tem-
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Figure 4.2: Comparison of the top of atmosphere brightness temperature
(gray shades, K) and composite radar reflectivity (color shades greater
than 25 dBZ) from the simulation without fusion heating in deposition
(top row), without homogeneous freezing (middle row), and the control
simulation (bottom row) that are valid at 1800 UTC 11, 0000 UTC, 0600
UTC 12 Sep, respectively.
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Figure 4.3: Comparison of the 200-hPa temperature (shaded, ◦C), MSLP
(contoured at intervals of 1 hPa), and co-moving wind vectors (reference
vector is 10 m s−1) from the simulation without fusion heating in depo-
sition (top row), without homogeneous freezing (middle row), and the
control simulation (bottom row) that are valid at 1800 UTC 11, 0000
UTC, 0300 UTC, 0600 UTC 12 Sep, respectively. The -52.5◦C isotherm
at 200 hPa is contoured bold red to show areal changes of the warming
with time. Data from the 9-km resolution simulation are used.
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perature field above -53◦C exists in collocation with deep convection (cf. Fig. 4.2d

and 4.3d). The most notable differences between No Fusion, No HFRZ, and the con-

trol exist in terms of upper-tropospheric temperatures at 12/0600 (cf. Figs. 4.3g-i).

As the deep convection depicted in Fig. 4.2 invigorates into a more pronounced

MCS, substantial warming of the 200-hPa temperatures occur in the control and

No HFRZ while such features never form in the No Fusion experiment. The only

temperatures above -53◦C seen in No Fusion at 12/0600 exist in collocation with the

highest model-derived composite reflectivity returns, suggesting the rapid transport

of cloud water to temperatures less than 235.16K, and thus, enabling homogeneous

freezing (cf. Figs. 4.2g and 4.3g).

Comparing each simulation’s warming within a 100 km × 100 km area around

each storm’s center, Fig. 4.4 depicts the time-height evolution of warming from

11/0600, cloud ice mixing ratio, and absolute vorticity. Focusing on No Fusion

(Fig. 4.4a), it is evident that most warming takes place near 275 hPa, or the level at

which the 235.16K isotherm resides for the majority of the integration. Thus, it is

presumed that the most substantial time-differenced warming (e.g., those in excess

of 1◦C) are due to homogeneous freezing. This warming is noticeably weaker when

compared to the other simulations (cf. Figs. 4.4a,b,c) though, with the differences

between the control and No Fusion reaching in excess of 1◦C just prior to 12/0600

(Fig. 4.5a). The absolute vorticity field in No Fusion is of weaker magnitude as well,

with the midlevel cyclonic circulation associated with the AEW not as pronounced

as compared to its counterparts (cf. Figs. 4.4a,b,c). This is complemented by a

noticeable difference in the development of the LLV just prior to and after 12/0600,
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which never takes place in No Fusion (Figs. 4.4a and 4.5a).In contrast to No Fusion,

little differences exist between No HFRZ and the control in terms of area-averaged

warming. While No HFRZ is more expansive in the warmer 200-hPa temperatures

and generates a slightly stronger MSLP disturbance (cf. Figs. 4.3h and 4.3i), its

upper-tropospheric warming is only between 0.1 and 0.4◦C warmer than that of the

control (Fig. 4.5b).

4.3.3 Meso-β-scale structural differences

While the previous section depicted structural differences on the meso-α and

synoptic scales, the following will address the disparities on the smaller meso-β and

meso-γ scales. As shown in Fig. 4.3, 12/0000 marks a critical time in the develop-

ment as the MSLP disturbance begins to evolve from a meso-β entity. Investigating

this time, Figs. 4.6 and 4.7 highlight the mesoscale features and their differences

between each of the simulations. It is worth noting that both figures use a ± 30-

min time average centered on 12/0000 in an attempt to eliminate any transient

features while isolating on more persistent features. Additionally, the cross sections

in Fig. 4.7 use a 3-slice average to ensure that the cross sections capture the most

relevant features of the upper troposphere.

At 12/0000, all simulations depict a meso-β-scale MSLP disturbance though

it is evident that the No Fusion simulation has the weakest and smallest disturbance

being characterized by PMIN of just below 1009 hPa and a spatial area of approxi-

mately 50 km × 50 km (Figs. 4.6a-c). While notable differences exist for the MSLP
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Figure 4.4: Time-height cross section of the temperature differences from
the 30-h simulated values (valid at 0600 UTC 11 Sep, shaded, ◦C), abso-
lute vorticity (contoured every 2×10−5 s−1), and cloud ice mixing ratio
(contoured in blue at 2, 5, 10, and 20 ×10−4 g kg−1) averaged over an
area of 100 km × 100 km surrounding the storm center for the simulation
without fusion heating in deposition (a), without homogeneous freezing
(b), and the control simulation (c). The vertical dashed lines in (a-c)
represent the time of TCG as estimated by the NHC.
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Figure 4.5: Time-height cross section of the simulation differences be-
tween the control and simulation without fusion heating in deposition (a)
and without homogeneous freezing (b) for temperature difference from
the 30-h simulated values (shaded, ◦C) and absolute vorticity (contoured
every 2×10−5 s−1) using a 100 km × 100 km area average around each
simulation’s respective storm center. The vertical dashed lines in (a)
and (b) represent the time of TCG as estimated by the NHC.
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Figure 4.6: Comparisons of: (a-c) the 400-150 hPa layer-averaged verti-
cal motion (shaded, m s−1) and co-moving wind vectors (reference vec-
tor is 10 m s−1) with MSLP (contoured at intervals of 1 hPa) overlaid;
and (d-f) the 400-150 hPa layer-averaged temperature (shaded, ◦C) and
cloud ice mixing ratio (contoured at 0.1, 0.25, 1, 2, 4, 10, and 20 ×10−4 g
kg−1) using a ± 30-min time average centered on 0000 UTC 12 Sep. The
top, middle and bottom rows represent the simulations without fusion
heating in deposition, without homogeneous freezing, and the control,
respectively. The dashed lines in (a-f) show the locations of the vertical
cross sections depicted in Fig. 4.7. Data from the 1-km domain are used.

143



field, it is obvious that the most striking difference between the simulations is re-

lated to the 400-150 hPa layer-averaged temperature field (shadings in Figs. 4.6d-f).

While the majority of the 400-150 hPa layer has temperatures greater than -37◦C

in No HFRZ and the control (Figs. 4.6e and 4.6f), the No Fusion simulation only

depicts a meso-γ region of warming that barely exceeds -37.4◦C in the 400-150 hPa

layer (Fig. 4.6d).

Complementing these temperature differences, it is evident that vertical mo-

tion field within the same layer is much more coherent and of larger positive magni-

tude when comparing No Fusion with its counterparts (cf. Figs. 4.6a-c). Both the

control and No HFRZ have several convective cores with vertical motions exceeding 4

m s−1 in addition to CBs1. It is clear that these regions of enhanced positive vertical

motion are collocated with warmer 400-150 hPa temperatures and increased cloud

ice mixing ratios (cf. Figs. 4.6a-c and 4.6d-f). That is, these convective motions

are transporting cloud water to the 400-150 hPa layer where depositional growth of

cloud ice is occurring, enabling the heating of the layer via LS. Removing LF from

LS (simulation No Fusion) eliminates the majority of the heating in the 400-150 hPa

layer (cf. Figs. 4.6d and 4.6f), succinctly demonstrating the importance of deposi-

tional heating for the thermodynamic changes of the upper troposphere just prior

to TCG.

Fig. 4.6 is supported by the cross sections created in Fig. 4.7, depicting that

the No Fusion simulation has much weaker vertical motions in the 650-100 hPa layer

1We define a CB herein as a vertical motion that exceeds 8 m s−1, similar to the definition used

in chapter 2.

144



Figure 4.7: Vertical cross sections using a ± 30-min time average cen-
tered on 0000 UTC 12 Sep of vertical motion (shaded, m s−1), potential
temperature (contoured at intervals of 4K), and cloud ice mixing ratio
(dash contours at 0.1, 0.25, 1, 2, 4, 10, and 20 ×10−4 g kg−1) for (a) the
simulation without fusion heating in deposition, (b) the simulation with-
out homogeneous freezing, and (c) the control simulation. The cross sec-
tion locations for (a-c) can be found in Fig. 4.6, respectively. The thick
solid line represents the homogeneous freezing temperature (235.16K).
Three volume slices were utilized in creating the cross section from the
1-km domain data set. 145



in comparison to the control. The level of maximum vertical motion is also lower in

No Fusion when compared to the control, with maximum updrafts generally located

between 325 and 225 hPa in contrast to the control whose maximum updrafts are

between 275 and 125 hPa (cf. Figs. 4.7a and 4.7c). Further comparisons reveal that

the No Fusion experiment has little warming of the upper troposphere as evidenced

by the lack of dip in the potential temperature (θ) surfaces.

Six hours later, i.e., 12/0600, both the control and No HFRZ runs undergo

TCG while the No Fusion simulation lacks a distinguishable meso-α-scale MSLP

disturbance (Fig. 4.8). The control continues to show warming in the 400-150 hPa

layer (cf. Figs. 4.6f and 4.8f), while little changes exist between the times for No

Fusion with the exception of slight warming (cf. Figs. 4.6d and 4.8d). It is evident

that the intensification of the control and No HFRZ are complemented by changes

in the vertical motion field, cloud ice content and temperatures in the 400-150 hPa

layer. Specifically, a coherent area of upward vertical motion exists with embedded

CBs and large cloud ice mixing ratios. Further, the expansion of the warm 400-

150 hPa layer temperatures occur in the presence of a more coherent storm-scale

outflow (Figs. 4.8b and 4.8c). These changes can be linked to the development of a

more coherent MCS in these simulations (Fig. 4.2), as the convective development

enables more pronounced upward vertical motions and divergent outflow just below

the tropopause. While the No Fusion experiment shows these traits, they develop

on a scale localized to that of the convective development, alluding to the lack of

convective growth and increased static stability in the upper troposphere.

The volume of atmosphere from 650-100 hPa above the storm centers confirms
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Figure 4.8: The same as Fig. 4.6, except valid at 0600 UTC 12 Sep. The
bold black contour represents the spatial extent of the 1005 hPa isobar.
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that significant warming occurs in the control and No HFRZ experiments, while

minimal warming occurs in No Fusion (cf. Figs. 4.8 and 4.9). Noting the vertical

locations of the 352K θ-surfaces in each simulation, it is clear that the No Fusion

simulation shows minimal warming as the 352K θ-surface meanders around 150 hPa.

In contrast, the control and no HFRZ simulations show the 352K θ-surface dip to or

beyond 250 hPa, depicting a warmer upper troposphere and reduced static stability.

The most pronounced thermodynamic changes in No Fusion exist at pressures at

or below 250 hPa, hinting that these changes are caused by homogeneous freezing

(Fig. 4.9a). It is still expected that some warming and enhanced vertical motions

exist in No Fusion due to heat associated with fusion (LF). However, these changes

are less than that found in the control, whose cross section depicts much stronger

vertical motions and upper troposphere with lesser static stability (Fig. 4.9c).

4.3.4 Updraft variability

Quantifying the changes in the vertical motion field, Fig. 4.10 is a count of

the updrafts exceeding various thresholds within a 100 km × 100 km area around

each simulation’s storm center. The methodology for updraft count is as follows.

First, a grid point (referred to reference point hereafter) at a particular pressure

level (e.g., 650 hPa) on the 1-km domain is tested to see if the vertical motion

exceeds x m s−1 (where x =1, 2, etc. m s−1). If so, the point at the layer above the

reference point (e.g., 625 hPa) is checked to see if x is exceeded at this point. This

constraint is employed to ensure the updraft had vertical coherency. If the updraft
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Figure 4.9: The same as Fig. 4.7, except valid at 0600 UTC 12 Sep.
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demonstrates vertical coherency, then the surrounding points to the reference point,

both longitudinally and latitudinally, are checked to see if they exceed 0.25 ∗ x. If

these 4 points exceed that value, the count for the reference level is increased by 1.

In short, the count of updrafts is restricted to a volume consisting of 2 km area with

a minimum depth of 25 hPa, eliminating the possibility of double counting updrafts

in comparison to just counting grid points whose values exceed x at each vertical

level.

Focusing on the weakest updrafts first (Fig. 4.10a,b), it is clear that all simu-

lations show counts increasing just before and at 12/0600 in the 650-150 hPa layer.

The No Fusion run exhibits a large count of updrafts of at least 1.0 m s−1, but the

number is significantly reduced as the threshold increases to 2.0 m s−1 (cf. blue bars

in Figs. 4.10a and 4.10b). In contrast, the control still exhibits a large number of

updrafts exceeding 2.0 m s−1 just prior to and at 12/0600.

When investigating the stronger updrafts, the No Fusion run shows little, if

any, updrafts exceeding 4.0 m s−1 (Fig. 4.10c). While seemingly contradictory to the

cross sections discussed prior, it is worthwhile to mention that those cross-sections

included a time and slice average while the counts do not invoke such a method.

As a result, it is possible that the counting misses some updrafts whose maximum

magnitudes are not at hourly intervals, but are instead off hour (e.g., 30 minute

intervals). Regardless, it is clear that the control shows pronounced convective

activity just prior to and at 12/0600, with roughly 25 updrafts exceeding 8.0 m

s−1 at the time of TCG. In contrast, No HFRZ has a minimal number of updrafts

exceeding 8.0 m s−1, but instead shows updrafts exceeding this threshold at 12/0600
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Figure 4.10: Count of updrafts exceeding various upward vertical motion
thresholds summed through the 650-150 hPa layer. The number of bursts
were counted in a 100 km × 100 km area surrounding each member’s
respective storm center. Black, blue, and red bars correspond to the
counts for the control, No Fusion, and No HFRZ, respectively.
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(Fig. 4.10e).

Overall, the counts of updrafts in Fig. 4.10 support the convective evolution

depicted in Fig. 4.2. It is seen that both the control and No HFRZ develop a coherent

MCS by 12/0600 with embedded enhanced convective activity. In contrast, the No

Fusion has a much less pronounced MCS, and thus, less potent updrafts near the

storm center.

4.3.5 Storm structural changes

While it is evident that the No Fusion simulation fails to undergo TCG, it has

not been shown in any detail as to why this failure occurs. We previously developed

a framework for the TCG of Julia which focused on the importance of: i) upper-

tropospheric warming; ii) persistent storm-scale outflow (resulting from persistent

deep convection within the AEW protective circulation); and iii) a shrinking LR

(which partially results from the warming of the upper troposphere). Thus, the

keys to this mechanism are clearly rooted in the reduction of static stability of the

upper troposphere in addition to the persistent development and amplification of

deep convection.

Connecting the meaningful features together, Fig. 4.11 shows various storm

attributes that are averaged using a 200 km × 200 km area around each storm’s

center. The first parameter of interest is the Brunt Väisälä frequency of the 400-150

hPa layer as a measure of the upper-tropospheric static stability. Clearly, the No

Fusion experiment shows greater static stability when compared to its counterparts,
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Figure 4.11: Hourly time series of the 200 km × 200 km area-averaged
(a) 400-150 hPa Brunt Väisälä frequency (×10−3 s−1), (b) Rossby radius
of deformation (km), (c) composite radar reflectivity (dBZ), and (d) 400-
150 hPa layer-averaged cloud ice convergence (×10−11 s−1), valid from
0600 UTC 11 to 0900 UTC 12 Sep.
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resulting from the upper-tropospheric warming being inhibited from to the lack of

depositional heating (Fig. 4.11a). In turn, LR is larger in No Fusion, requiring

that the storm-scale outflow must extend further from the center of the developing

disturbance in order to enable the accumulation of upper-tropospheric warming

(Fig. 4.11b). However, since there is less warming of the upper troposphere, the

updrafts of developing convection are accelerated less. This results in less convective

development and generally weaker convection within the AEW circulation (Figs. 4.2

and 4.11c). With less and weaker convective development, the storm-scale outflow

is weaker and cannot extend to LR (Fig. 4.11d). With less divergent outflow and

minimal convective development, the upper-tropospheric warming never becomes a

meso-α-scale feature and thus, cannot induce similarly sized hydrostatic pressure

falls that would enable TCG to occur (Fig. 4.3).

4.4 Summary and conclusions

This chapter investigates the role of depositional and homogeneous freezing for

the TCG of Hurricane Julia (2010). Using the WRF model, sensitivity simulations

are conducted by modifying the microphysics scheme and comparing the results to

the control simulation created in chapter 2. The first modification made was the

removal of the latent heat of fusion from the latent heat of sublimation such that the

heat released during deposition was only related to the latent heat of vaporization

(e.g., LS = LV). The second modification disabled any homogeneous freezing by

setting the homogeneous freezing temperature to an unphysical value of 100K.
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Results show that removing fusion heating in depositional growth inhibits the

TCG of Julia. Instead of developing a coherent meso-α-scale MSLP disturbance

like the control, the simulation removing fusion heating from deposition fails to

develop any meaningful MSLP falls on the meso-α scale. The lack of MSLP falls

results from the lack of hydrostatically induced pressure falls due to pronounced

upper-tropospheric warming during TCG. This warming is all but removed in the

No Fusion simulation with substantially weaker vertical motion in the 650-150 hPa

layer. The intensity and spatial extent of the deep convection is also impacted when

removing depositional heating as the convective updrafts are not as intense and fail

to develop a coherent storm-scale outflow.

While mature TCs develop a warm core due to thermal wind balance, it is

clear that the upper-tropospheric warming during TCG enables the formation of the

meso-α-scale MSLP falls, and in turn, the LLV via enhanced PBL convergence. Since

TCG is clearly just a transition state, it is characterized by unbalanced flow (with the

exception of the large-scale AEW). This imbalance is manifested in the depositional

heating that occurs in the upper troposphere as a result of convective development.

With persistent deep convection within the pouch of the AEW, the upper-level

warming is able to become a storm-scale feature and enable persistent MSLP falls.

As clearly shown in the No Fusion simulation, the removal of depositional heating

negates the series of events leading to TCG, as convective activity is less rigorous

and smaller spatially.

Since our results showed that TCG is sensitive to ice microphysics, one must

be careful when utilizing a complex ice microphysics scheme to investigate the devel-
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opment of a TD. The simple modification made in the No Fusion simulation yielded

significant developmental differences for the TCG of Julia and to the structure and

intensity of the simulated deep convection. Obviously, there are more uncertainties

in ice microphysics than warm microphysics given the complex processes that lead

to the growth and evolution of cloud ice, graupel, snow, and hail. To investigate the

results found herein further, more observational studies will be needed to help quan-

tify the magnitude of cloud ice in the upper troposphere during TCG. Further, there

should be a larger focus on observational studies relating to the representativeness

of cloud microphysics schemes in numerical weather models.
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Chapter 5: Concluding remarks and future work

5.1 Concluding remarks

In this thesis research, we investigate the TCG of Hurricane Julia (2010) us-

ing an analysis of large-scale reanalysis data, observations, and most importantly,

a plethora of cloud-resolving high-resolution WRF simulations. Given the multi-

scale processes that are unresolvable via observational platforms, our work focuses

on studying TCG preferentially via high-resolution numerical weather simulations.

In particular, our results aid in understanding these multi-scale interactions while

depicting a clear path to the development of TD Julia. The mechanisms associated

with the TCG of Julia are investigated several different ways, including the use of

ensemble simulations and novel statistical analyses.

Specifically, our work supplements and confirms the role of the AEW during

TCG under the marsupial pouch paradigm. It is shown that mesoscale perturbations

do have a predisposition for growth along the low-level AEW critical latitude and

make radial entrance into the AEW pouch center via this defining characteristic

of the AEW. Further, the growth of low-level cyclonic vorticity during the TCG

of Julia does occur via bottom-up mechanisms, with the aggregation of two main
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mesovortices and invigoration via enhanced PBL convergence. The growth of the

LLV that becomes TD Julia shows significant interaction with the vorticity field

of the AEW, alluding to the multi-scale interactions of TCG that are difficult to

observe.

Most importantly, while the wave pouch hypothesis is valid for TCG, it does

not seem to be sufficient to generate an intense TC without favorable conditions

in the upper outflow layer. Our research thoroughly connects upper-tropospheric

thermodynamic changes to the genesis of Hurricane Julia. The influences of upper-

tropospheric processes for TCG have not been investigated with much detail in

previous studies. Without upper tropospheric warming during the TCG of Julia,

meso-α-scale MSLP falls would have not occurred and the growth of the LLV would

have been inhibited. For the development of the MSLP disturbance, persistent

upper-level warming most occur on the meso-α-scale. This warming results from

depositional heating through persistent deep convection that forms within the pro-

tective circulation of the AEW. As deep convection initiations and intensifies along

the AEW low-level critical latitude, a coherent storm-scale outflow develops, ex-

panding the upper-level warmth into a storm-scale feature. While this expansion

occurs, the reduction in the static stability of the upper-troposphere enables the

reduction of the Rossby radius of deformation. Thus, the storm-scale outflow is

able to expand beyond the circumference defined by the Rossby radius of deforma-

tion and the momentum field begins to adjust to the mass field, allowing for the

accumulation of pronounced upper-level warming on the meso-α-scale.

The genesis of Julia is reproduced in 20 ensemble simulations in an attempt
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to diagnose the key dynamical mechanisms during the transition. Such a method

has been seldom used previously due to computational resource limits when try-

ing to conduct high-resolution ensemble integrations. Our work has set the stage

for future studies to investigate TCG using high-resolution model simulations by

providing a reproducible method and useful statistical analyses to describe the en-

semble results. It is found that the TCG of Julia is highly predictable. Even so, the

seemingly minimal spread between ensemble solutions results in large dynamical

and thermodynamical differences. The most obvious differences between ensem-

ble members are related to the development of persistent deep convection near the

AEW pouch center, the warming of the upper troposphere, and the reduction in the

Rossby radius of deformation. These differences confirm our development hypothe-

ses that upper-tropospheric warming is important for the TCG of Julia while also

confirming that persistent deep convection is essential for TCG.

The connections between the upper-troposphere and low-level development

proposed using the control simulation are validated via the ensemble through both

parametric differences as well as ensemble sensitivity analyses. Using the novel

approach of ensemble sensitivity analyses and EOFs in the ensemble dimension,

the patterns of MSLP disagreements between ensemble members could be isolated

and linked to upper-tropospheric temperature anomalies. Without investigating

these patterns of ensemble differences, the ensemble would have never yielded such

innovative details on the predictability of TCG.

Our work also investigates the sensitivity of TCG to ice microphysics, an un-

touched area of investigation in previous studies. Modifications to the microphysics
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scheme confirms that depositional heating of the upper troposphere is important for

the TCG of Julia. Removing the latent heat of fusion from the depositional process

results in a delayed and much weaker MSLP disturbance as the upper-tropospheric

warming is unable to induce meaningful hydrostatic surface pressure falls. Of course,

this result supports the notion that the uncertainty of numerical weather prediction

is cemented in cloud microphysics. Thus, we believe that future observational cam-

paigns should be focused on investigating upper-tropospheric warming of tropical

disturbances, the cloud ice content within these disturbances, and how to improve

the cloud ice microphysics of current microphysics parametrization schemes.

Overall, our work supplements the work related to the marsupial pouch paradigm

with the addition of upper-tropospheric processes and the development of mesoscale

features within the parent AEW. While the paradigm has provided an idealized lo-

cation for genesis to occur, it lacked information on the mesoscale processes during

TCG and relied on the bottom-up theory for vorticity growth of the LLV. While

the growth of the LLV is essential, previous work was biased to processes of the

lower and middle troposphere. Thus, our work focuses on connecting the upper-

tropospheric changes into these paradigms while using novel techniques to isolate

new important mechanisms for TCG within an AEW in the north Atlantic basin.

5.2 Future work

To investigate the series of events described herein further, we would like to

perform this experiment again on several different TCG cases for storms in the north
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Atlantic basin. While we have derived a robust theoretical construct based on the

TCG of Hurricane Julia, it is worthwhile to see if the sequence of events hold true

for other TCG cases within AEWs.

While still in the early stages, WRF-LETKF ensemble simulations have been

conducted for the TCG of Hurricane Debby (2006). There are significant differences

between the TCG of Debby and that of Julia, mainly with the strength of the

parent AEW. Thus, the TCG of Hurricane Debby will assuredly provide an excellent

comparison storm. Given the computational resources needed for such a study, it

remains to be seen how many cases we can test our theories with. Obviously, the first

step will be to derive meaningful quantitative and qualitative comparisons between

Debby and Julia. Beyond these two storms, other storms of interest will be those

with enhanced observational data, e.g., from observational campaigns with weather

data from flights into developing disturbances.
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Appendix A: WRF-LETKF System Details

The code used for the WRF-LETKF data assimilation system was developed

by Miyoshi (2005) and adapted for the WRF model by Miyoshi and Kunii (2012).

A four-dimensional ensemble Kalman Filter (4D-EnKF; Hunt et al. 2004) allows for

the system to ingest asynchronous observations and includes spatial covariance local-

ization with a physical distance (Miyoshi et al. 2007) as well as temporal covariance

localization. The assimilation cycle in the WRF-LETKF system uses observational

data produced every 6 hours (0000, 0600, 1200, and 1800 UTC) in the PREPBUFR

format (Keyser 2013) from NCEP’s GDAS. The PREPBUFR data are used within

a 6-h window centered on the analysis time with the observation time rounded to

the hour for hourly input into the 4D-LETKF (Miyoshi and Kunii 2012). WRF

first-guess forecasts are integrated forward for 9-h periods, beginning 6 h prior to

the analysis time. The system conducts the assimilation using the following three-

dimensional prognostic variables: temperature (T), water vapor mixing ratio (qv),

pressure (P), geopotential height (ph), and wind components (u, v, w). Additionally,

surface pressure (ps), 2-m temperature (T2) and 2-m water vapor mixing ratio (q2)

are used in the observational operators. Similar localization parameters to those of

Miyoshi and Kunii (2012) are used in the cycle, including a 400-km horizontal, 0.4-
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ln(P) vertical, and 3-h time localization parameter. The choice for these values stems

from the success of assimilating real-time observations in previous studies (Miyoshi

et al. 2010). This cycle does not use adaptive covariance inflation (Miyoshi 2011),

but uses a fixed, domain-constant, 20% covariance multiplicative inflation (e.g., a

1.20 inflation parameter). This global constant is used since this method closely

resembles the results of the adaptive inflation technique for a 96-h cycle (see Fig. 3

of Miyoshi and Kunii 2012).
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